
Folklore in Software Engineering:
A Definition and Conceptual Foundations
Eduard Paul Enoiu

Jean Malm

eduard.paul.enoiu@mdu.se

jean.malm@mdu.se

Mälardalen University

Västerås, Sweden

Gregory Gay

greg@greggay.com

Chalmers University of Technology and

University of Gothenburg

Gothenburg, Sweden

Abstract
We explore the concept of folklore within software engineering,

drawing from folklore studies to define and characterize narratives,

myths, rituals, humor, and informal knowledge that circulate within

software development communities. Using a literature review and

thematic analysis, we curated exemplar folklore items (e.g., beliefs

about where defects occur, the 10𝑥 developer legend, and tech-

nical debt). We analyzed their narrative form, symbolic meaning,

occupational relevance, and links to knowledge areas in software

engineering. To ground these concepts in practice, we conducted

semi-structured interviews with 12 industrial practitioners in Swe-

den to explore how such narratives are recognized or transmitted

within their daily work and how they affect it. Synthesizing these

results, we propose a working definition of software engineering

folklore as informally transmitted, traditional, and emergent narra-

tives and heuristics enacted within occupational folk groups that

shape identity, values, and collective knowledge.We argue that mak-

ing the concept of software engineering folklore explicit provides a

foundation for subsequent ethnography and folklore studies and

for reflective practice that can preserve context-effective heuristics

while challenging unhelpful folklore.

CCS Concepts
• Software and its engineering → Software development pro-
cess management; Software development methods; Program-
ming teams; • Social and professional topics → History of
computing; Computing profession.

Keywords
Software Engineering, Folklore

ACM Reference Format:
Eduard Paul Enoiu, Jean Malm, and Gregory Gay. 2026. Folklore in Software

Engineering: A Definition and Conceptual Foundations. In Proceedings of
The 19th International Conference on Cooperative and Human Aspects of
Software Engineering (CHASE ’26). ACM, New York, NY, USA, 11 pages.

https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CHASE ’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Software Engineering (SE) has generated a body of shared narra-

tives, beliefs, jokes, customs, andmyths, much like other established

fields or communities [34]. From stories to narratives, these cul-

tural artifacts seem to be passed among developers, testers, and

managers. These narratives range from historical anecdotes and

rituals to humor and persistent myths about productivity and de-

velopment practices. Even if we often dismiss them as anecdotal or

unscientific, such shared narratives appear to play a significant role

in shaping how software professionals perceive their work, make

decisions, and construct identities [6, 15, 40].

Folklore, in the academic sense, refers to the collective traditions,

stories, and customs of a group of people. Folklorists, such as Alan

Dundes [10, 13] and Simon J. Bronner [8], emphasize that folklore is

alive and evolving, even in modern settings. Dundes defined “folk”

as any group of people who share at least one common factor—be

it an occupation, language, or any shared identity—and noted that

any such group will have traditions it calls its own.

Every culture has origin stories and legends—software develop-

ment is no different. Consider the “first computer bug”, recorded

in 1947 [3, 20], where engineers found a moth stuck in a Harvard

Mark II relay and taped it in the logbook with the note “First actual

case of bug being found”. This story, often attributed to computing

pioneer Grace Hopper
1
, has been retold for decades as the origin

of the term “debugging”. The artifact (the moth in the logbook) is

preserved by a museum and is an iconic piece of technology lore.

Just as folklore includes legends, it also contains myths and

beliefs—things widely repeated that may be oversimplified, exag-

gerated, or outright false. SE has plenty of these “received wisdoms

circulating among teams”. For example, a persistent belief is that

some developers are 10 times more productive than others [6]. This

notion stems from claims like “the best programmers are up to 28

times better than the worst programmers”. Such claims, cited as

“accepted truths” by authors like Robert Glass [16] and Laurent

Bossavit [6], have gained almost legendary status.

In SE literature (e.g., [6, 15, 16]), there is a tradition of identifying

and debunking software myths, essentially exposing beliefs that

does not hold up to scrutiny. Laurent Bossavit’s “The Leprechauns

of Software Engineering” [6] explicitly calls out how folklore can

turn into facts in the field through constant repetition and vari-

ation. Prior research has also examined how practitioners share

experience through narratives such as war stories [22, 26] and how

everyday work departs from formal processes [4, 18, 23], as also

1
See Smithsonian National Museum of American History, Log book with computer

bug, https://n2t.net/ark:/65665/ng49ca746a3-b8b7-704b-e053-15f76fa0b4fa

https://orcid.org/0000−0003−2416−4205
https://orcid.org/1234-5678-9012
https://orcid.org/0000-0001-6794-9585
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://n2t.net/ark:/65665/ng49ca746a3-b8b7-704b-e053-15f76fa0b4fa

CHASE ’26, April 13–14, 2026, Rio de Janeiro, Brazil E. P. Enoiu et al.

Folklore Definitions
(Dundes, Bronner)

Literature Review
(Google, Google Scholar)

Dimensions of
Folklore

rituals, myths, humor, superstitions,
informal and tacit knowledge

SE Folkore Concepts
folkore items (narrative form, symbolic meaning,
occupational group, knowledge areas, context)

Interview
Study

Folkore-Informed
SE Studies

1 2

3 4

5

SE Folklore Definition

Figure 1: Overview of the method used to explore SE folklore: theory grounding, folklore items, practitioner interviews, and
synthesis into a working definition.

emphasized in ethnographic investigations (e.g., plans and situ-

ated actions [37]). Other lines of work in knowledge engineering

and knowledge management have also focused on eliciting and

externalizing expertise (e.g., [28]).

This study seeks to explore the concept of SE folklore by drawing

from traditional folklore theory and applying it to the occupational

practices within software development:

What constitutes SE folklore, and how can it be defined?

We aim to define what constitutes folklore in SE, identify its recur-

ring dimensions, and examine how it manifests in different roles

and knowledge areas. We examine existing implicit and explicit

characterizations. We also seek to identify and categorize specific

manifestations of folklore within SE practices. Ultimately, we define

the concept of SE folklore and propose several areas of investigation

within the context of SE. By synthesizing concepts from folklore

studies with SE research, we cast a spotlight on a largely overlooked

aspect of the field, and lay the foundation for future investigations

into how cultural narratives shape SE.

2 Research Method
We aim to define and characterize SE folklore by identifying its

dimensions and manifestations in SE contexts. The research process

followed is illustrated in Figure 1.

2.1 Folklore Definitions and Dimensions
A comparative synthesis of folkloristics and folklore studies over

time (e.g., [2, 17, 19, 39]) highlights different perspectives, including

traditional knowledge, performance and event analysis, communi-

cation and genre approaches, and material culture traditions. With

this intellectual legacy in mind, we focus on the modern reformula-

tion of folklore [8, 9] that emphasizes social interaction, a process-

oriented conception of tradition, living folklore, and the roles of

cognition and practice, as these lenses are the most immediately

applicable to occupational folklore in SE settings.

We apply the definitions and categories from folklore studies—

particularly from Dundes [10] and Bronner [8]—to explore folklore

within an SE context (Step 1 in Figure 1). Dundes frames folklore

as informally transmitted traditional knowledge shared among

members of a folk group, emphasizing the roles of communication,

repetition, and group identity. Bronner expands this by viewing

folklore as embodied in everyday routines, rituals, artifacts, and

symbols, underscoring its cultural and practical dimensions. Build-

ing on these foundations, we adapted dimensions such as rituals,

myths, humor, superstitions, and informally transmitted knowledge

as potential indicators of folklore (Step 2). These categories guide

the development of a working definition of SE folklore.

2.2 Software Engineering Folklore Concepts
To explore how these folkloric dimensions manifest in practice

(Step 3 in Figure 1), we manually collected and analyzed articles

that either explicitly or implicitly engage with beliefs, informal

knowledge, rituals, or cultural practices in software development.

One author conducted the search and initial screening; the re-

sulting set of publications and items was then iteratively discussed

with the other authors to refine the analysis. The initial classifica-

tion was performed by the same author and reviewed and aligned

through discussion with the author team. The selection process

was informal and exploratory. We used Google Scholar and the

Google search engine to identify literature that mentioned folk-

lore in the context of SE or addressed relevant themes, using the

phrase “software engineering folklore” and screening results by title.

This process resulted in a set of items that should be interpreted as

illustrative rather than comprehensive.

We then identified an example set of SE folklore concepts that

characterize specific folklore items (Step 4 in Figure 1). To analyze

these items, we used interpretive concepts (i.e., form, performance,

meaning, transmission) informed by Bronner’s practice-oriented

description of folklore as cognitive and communicative praxis [9],

as well as the narrative forms (e.g., myth, legend, anecdote, humor,

ritual, artifact) drawn from Alan Dundes’ typology [10]:

Myths are stories believed to be true by a group.

Legends are stories with a historical basis.

Anecdotes are illustrative stories based on experience.

Rituals are symbolic and repeated performed actions.

Artifacts are material or symbolic objects.

We classify the narrative form of each item, as well as its sym-
bolic meaning, related occupational groups, and relevant knowledge
areas. The “symbolic meaning” refers to the cultural depth of that

item, as outlined in Schein’s model of organizational culture [29].

Folklore in Software Engineering:
A Definition and Conceptual Foundations CHASE ’26, April 13–14, 2026, Rio de Janeiro, Brazil

This concept captures whether the folklore functions as an arti-

fact, an espoused value, or a basic underlying assumption
2
. Each

symbolic layer represents a different degree of cultural visibility

and resistance to change, and each interacts differently with folk-

lore. The occupational group identifies the professional roles most

closely associated with the folklore item, such as developers, testers,

maintainers, architects, or project managers. Finally, each folklore

item is mapped to one or more SE knowledge areas using the SWE-

BOK classification
3
, thereby linking cultural expressions to specific

technical domains, such as testing, maintenance, or design.

2.3 Interview Study
Drawing on SE concepts and dimensions of folklore, we designed

an interview study to explore practitioner experiences (Step 5 in Fig-

ure 1). Through iterative analysis and thematic coding, we expanded
the concept of SE folklore in practice and developed a working

definition for future studies.

2.3.1 Data Collection. We conducted face-to-face and online

semi-structured interviews, following the guidelines by Linåker et

al. [21]. We follow Strandberg’s guidance on ethical interviews [36]:

consent was obtained, raw audio was stored with time and space

limits, and transcripts were anonymized.

The interview protocol was planned and refined through pilot-

ing (in three initial interviews). Our analytic stance was semantic,

emphasizing broad and data-driven coding while also attempting

to fit the responses into the prior theoretical frame presented in

Section 2.2. Before each interview, we explained the purpose, em-

phasized voluntary participation and the right to skip any question

or withdraw, and described confidentiality practices. We requested

permission to audio record solely to ensure accuracy; when granted,

recordings were kept confidential. Interviews began with a brief

icebreaker where participants described their current role, tenure

in SE, and organizational background.

The interview guide included three main sections (see Table 1).

Section 1 produced general perceptions by asking participants to

define folklore in SE in their own context. Optional prompts in-

cluded informally transmitted knowledge (stories, sayings, jokes,

traditions) and recurring practices or rituals. Section 2 investigated

four folklore types—myths and beliefs (including rules of thumb

around productivity, quality, testing, programming, and manage-

ment, and whether such beliefs are questioned or taken for granted);

anecdotes and legends (repeated stories about SE projects, engi-

neers, or memorable bugs, and the roles such stories play); rituals

and practices (recurring SE routines such as stand-ups or events

and any meanings beyond their practical purposes, e.g., identity or

value signaling); and artifacts and humor (objects, memes, jokes,

and what they imply about group identity, culture, or values in SE).

Finally, Section 3 focused on transmission and impact, exploring

how newcomers adopt folklore, how it endures over time, whether

it has influenced decisions or conflicts, how its expression varies

2
Folklore items were interpreted as artifacts (visible behaviors, structures, processes),

espoused beliefs and values (stated ideals, goals, justifications), or basic underlying

assumptions (taken for granted beliefs shaping perception and action).

3
For more details, we refer the reader to the SWEBOK guide: https://sebokwiki.org/wi

ki/An_Overview_of_the_SWEBOK_Guide

Table 1: Interview guide.

1. Could you briefly describe your current role and how long you have been working in SE?

2. How many different software dev organizations have you worked for?

3. In a general sense, how would you define the term folklore in software engineering?

4. When you think about folklore in the context of your work, what comes to mind?

5. Have you heard any myths and persistent beliefs, or any rules of thumb (e.g., about produc-

tivity, quality, testing, programming, management)?

6. Are there stories in your team, company, or community that people tend to repeat, for

example, about past projects, engineers, or memorable bugs?

7. Can you describe any recurring practices or rituals you have encountered (for example,

stand-ups, recurring events, or other routines)?

8. Are there objects, memes, or jokes that circulate within your team, company, or community?

9. Can you recall how this folklore was passed on to you when you joined a team or company?

10. Have you ever seen or experienced a piece of folklore influence a decision, shape an attitude,

or contribute to a conflict at work?

11. How does the way folklore (such as beliefs, stories, rituals, or humor) is expressed or treated

differ between the organizations you have worked in?

12. In your experience, do you see folklore as mostly helpful, mostly harmful, or a mix of both?

13. Before we wrap up, is there anything else you would like to share, any examples or experi-

ences we have not touched on, that would be important for this study?

across organizations, and whether its effects are perceived as help-

ful, harmful, or mixed. Each interview closed with an invitation for

additional examples and a debrief thanking the participant.

A pair of researchers conducted sessions—a primary interviewer

and a second researcher who took notes and posed follow-up ques-

tions. Interviews typically lasted 45 to 60 minutes. Where recording

was possible, we produced verbatim transcripts. When recording

was not feasible, we created detailed summary transcripts that

preserved the substance and meaning of the exchange and took

contemporaneous or immediate post-hoc notes. All material was

anonymized during transcription; personally identifying details

and organizational names were replaced with neutral placeholders.

Participants reviewed their transcripts for accuracy before analysis.

2.3.2 Population and Sampling. We used purposive convenience
sampling to obtain variation in roles and organizational contexts

among practitioners based in Sweden. For this exploratory phase,

we aimed for 10–15 interviews to achieve depth and role diver-

sity, monitor for thematic saturation, and to be able to add cases

incrementally if new themes continued to emerge. We recruited

practitioners through professional and research networks via direct

invitations, and iteratively searched additional participants to ad-

dress gaps in gender, role, and organizational context; recruitment

stopped at 𝑛 = 12 when successive interviews reiterated similar

topics and no substantially new themes emerged.

Table 2 summarizes the 12 interviewees. Experience ranged from

9 to 41 years, with most over 15 years. Six held leadership roles,

and others were senior engineers in requirements, development,

testing, verification, and configuration management. There are

both interviewees with a single-employer tenure and those with

multiple-company careers. Three participants described long ca-

reers within one firm. At least eight worked across more than

two companies, ranging from consulting across many sites, mixed

industry-to-academia and consultancy paths, and small to large

enterprise mobility. Two interviewees mentioned that during their

careers, they interacted with over seven teams.

https://sebokwiki.org/wiki/An_Overview_of_the_SWEBOK_Guide
https://sebokwiki.org/wiki/An_Overview_of_the_SWEBOK_Guide

CHASE ’26, April 13–14, 2026, Rio de Janeiro, Brazil E. P. Enoiu et al.

Table 2: Participant IDs and demographics.

ID Demographics

P1 20 years experience, current role as project manager, prior roles as tester, developer,

consultant.

P2 over 20 years experience, current role as requirements and engineer, prior role as

developer.

P3 15-20 years experience in industry and academia, current role as automation lead,

previously consultant and software and R&D engineer.

P4 9 years experience, current role as manager (development and verification), previ-

ously integrator, architect, requirements, safety engineer.

P5 41 years of experience, current role as academic, prior role as engineer and consultant.

P6 11 years of industrial experience, current role as academic, prior role as designer and

requirements engineer.

P7 28 years of experience, current role in software engineering, previously across multi-

ple companies.

P8 around 20 years of experience, current role as senior software engineer, previously

at two companies.

P9 several years of experience, current role as developer and project lead, previously a

verification engineer.

P10 24 years of experience, current role as manager for a software development team,

previously 11 years as a developer, and 9 years as a test engineer.

P11 around 10 years of experience, current role as a software engineer, previously at

three companies.

P12 21 years of experience, current role as technology leader, previously roles in several

companies and universities.

2.3.3 DataAnalysis. Weanalyzed the interviews following Braun

and Clarke’s guidelines for thematic analysis [7]. Initial coding fo-
cused on identifying recurring ideas related to the theoretical frame-

work used (perceptions, folklore types, and transmission/impact)

while remaining open to unanticipated categories. Coding then

proceeded iteratively and collaboratively. After a calibration phase

where all authors coded the same interview to establish agreement,

all other interviews were independently double-coded by rotating

pairs of authors. One author then merged the codings for each

interview, resolving discrepancies through discussions.

We compared codes across interviews to surface common pat-

terns, grouped related codes into candidate themes and subthemes

in a digital whiteboard, and refined these through discussions. To

aid transparency and traceability, we maintained a shared log of

notes, steps, and coding. Coding was both deductive and inductive

as well as semantic, allowing single excerpts to map to multiple

codes and higher-order themes. We iteratively consolidated over-

lapping codes and themes. We monitored for thematic saturation by

tracking the recurrence of themes across interviews and observed

that the vast majority are reflected in multiple interviews.

The analysis produced a consolidated set of themes that de-

scribe how SE folklore is perceived, manifested, and propagated

across organizational settings. The final outputs of the method were

anonymized transcripts, a consolidated set of codes, a thematic map

with named themes and subthemes, and curated quotations for each

theme and subtheme.

3 Findings
Our findings are structured as follows: first, we summarize the

contributions of selected studies to understanding SE folklore (Sec-

tion 3.1); second, we present a thematic analysis of curated folklore

items (Section 3.2); third, we present the thematic analysis of the

interviews (Section 3.3); finally, we discuss how these findings align

with folklore theories and identify conceptual and methodological

gaps, proposing a definition of SE folklore (Section 3.4).

3.1 SE Folklore in the Literature
To set a foundation, we reviewed a manually curated sample of re-

search literature that addresses informal knowledge, belief systems,

narratives, and ritualized practices within software development.

Table 3 presents a selection of thirteen publications that were an-

alyzed according to their explicit discussion of folkloric concepts,

their contributions to understanding the folklore of SE, and the

specific conceptual or methodological gaps they expose.

While the term “folklore” is rarely explicitly invoked in the SE
literature, several studies have addressed the persistence of various

claims, myth-like narratives, and socially constructed norms in soft-

ware development. Some studies explicitly use the term “folklore”,

such as Bossavit [6]—who critiques unempirical claims passed down

as truths—and Spínola et al. [35], who label diverging practitioner

opinions on technical debt as “technical debt folklore”. Others, such

as Neumann [24], provide theoretical grounding from library and

information science, applying folklore studies to analyze how ritu-

als and narratives shape professional identity. Several papers (e.g.,

Swillus et al. [38], Shrikanth et al. [33], and Ciancarini et al. [11])

reveal folklore (e.g., transmission of beliefs and practices or narra-

tives about testing or project management) but do not frame them

as folklore or analyze their symbolic and cultural significance.

In particular, Bossavit [6] examined the concept of folklore, argu-

ing that many widely accepted “truths” in SE are myths perpetuated

through misinterpretation, citation errors, and a lack of empirical

verification. They show how anecdotal evidence and subjective

opinions have been repeatedly cited as evidence, shaping industry

beliefs without robust validation. Bossavit advocates for a more

skeptical approach to SE knowledge, emphasizing the need for rig-

orous scrutiny and historical awareness to prevent the propagation

of unfounded claims.

This selected body of work highlights a need for a definition of

SE folklore that captures the informally transmitted knowledge and

practices shared within occupational software development groups.

Furthermore, it reveals several gaps and opportunities, including

the absence of methods to study folklore elements such as rituals,

storytelling, and belief formation in SE contexts.While some studies

identify and validate beliefs (e.g., about defects, technical debt, or

dead code), others reveal a persistence of unverified or outdated

practices. Overall, few studies explicitly apply methods or theories

from ethnographic studies to the software development domain [30].

Such methods could help explain how cultural narratives, myths,

and shared practices influence both researchers and practitioners.

This gap motivates the need to establish SE folklore as a formal

concept with descriptive, critical, and cultural explanatory power.

3.2 Analysis of the Identified Folklore Items
Table 4 presents an analysis of folklore-related items (F1–F15) de-

rived from the studies in Table 3. Our intention was not to provide

an exhaustive account of folklore items, but to highlight exemplar

cases that can be used to examine various dimensions and concepts

of SE folklore. The folklore items span a range of topics—beliefs

about where defects occur [1], the relation between quality, produc-

tivity, and experience [33], views on technical debt [35], perceptions

such as the “super-programmer” [6], and the idea that removing

dead code improves maintainability and performance [27].

Folklore in Software Engineering:
A Definition and Conceptual Foundations CHASE ’26, April 13–14, 2026, Rio de Janeiro, Brazil

Table 3: Selected folklore-related SE literature, sorted by date of publication.

Literature Mentions
Folklore

Contributions Gaps and Opportunities

Neumann (1999) [24] Yes Applies folklore concepts to workplaces; emphasizes rituals and artifacts. Suggests methods for studying workplace practices; can inform SE studies.

Basili & Shull (2005) [1] Yes Presents defect folklore as commonly held heuristics; examines their accuracy

across studies.

Suggests ways to analyze belief formation and evaluate experience-based

knowledge.

Passos et al. (2011) [25] Yes Uses term “technical folklore” to frame belief systems that shape SE practice. An empirical attempt to connect belief origins, usage, and impact.

Shull (2012) [34] No Discusses the role of belief in SE; links beliefs to experience and calls for

evidence-based validation.

Highlights the importance of understanding belief persistence; folklore theory

could provide additional context.

Spínola et al. (2013) [35] Yes Defines technical debt folklore as community-based, experience-driven beliefs;

surveys practitioners for consensus.

Indicates how shared opinions may influence SE practice; enables examination

of belief adoption.

Bossavit (2017) [6] Yes Deconstructs several well-known SE claims (“leprechauns”) as unverified be-

liefs passed as facts; supports empirical scrutiny.

Useful to trace belief folklore and myth-making in SE; foundational for defining

and demythologizing SE folklore.

Zagalsky (2018) [40] No Investigates knowledge sharing in developer communities; analyzes media use

and human factors.

Offers a foundation for applying folklore concepts to collaborative and

knowledge-sharing of narrative aspects of SE.

Méndez Fernández & Pas-

soth (2019) [15]

Yes Directly connects SE to folklore; describes exemplar folklore in empirical SE;

argues folklore is backed up by social mechanisms.

A good starting point in the analysis of folklore grounding; a critique of how

conventional wisdom and weak claims persist in SE research and practice.

Shrikanth & Menzies

(2020) [32]

No Shows gaps between defect prediction beliefs and experiment results; shows

most beliefs are context-dependent.

Opens possibilities for improving belief assessment through monitoring and

context-aware adaptation.

Shrikanth et al. (2021) [33] No Evaluates long-standing SE beliefs; finds most have limited empirical support. Highlights belief persistence despite lack of evidence; opportunity to interpret

this persistence via folklore theory.

Ciancarini et al.

(2023) [11]

No Reviews literature on storytelling in SE; identifies functions of stories in col-

laboration and reasoning.

Basis for interpreting stories as folklore; potential for applying folklore theory

to genres and archetypes.

Swillus et al. (2024) [38] No Explores developers’ testing experiences; identifies lived experiences (i.e., ritu-

als and social dimensions of testing).

Entry point to analyze software testing as a folkloric domain with habits,

informal norms, and shared identity.

Romano et al. (2024) [27] Yes A confirmation that removing dead code improves the structure of code as

well as resource usage in a specific context.

A single example of how validation can engage with folklore-generation and

assumptions in SE.

Table 4: Analysis of identified folklore items. Symbolic Meanings: A = Artifact, EV = Espoused Beliefs and Values, BUA = Basic
Underlying Assumptions. Occupational Groups: DEV = Developers, TST = Testers, MNT = Maintainers, ARC = Architects, PM =
Project Managers, ALL = All roles. Knowledge Areas: DSN = Design, CNST = Construction, TEST = Testing, MNT = Maintenance,
MGMT = Management, PROC = Process, QUAL = Quality, ECON = Economics, PRO = Professional Practice.

ID Folklore Item Narrative Form Symbolic
Meaning

Occupational
Groups

Knowledge Areas

F1 The vast majority of defects are interface defects [1]. Myth BUA DEV, TST CNST, QUAL, DSN

F2 Object-oriented programming reduces errors and encourages reuse [33]. Myth EV DEV DSN, CNST, QUAL

F3 Higher software quality results in better productivity [33]. Myth EV DEV, PM PROC, QUAL

F4 Developer performance varies dramatically (e.g., 10x productivity) [33, 6]. Legend BUA DEV, PM PRO

F5 Becoming an expert requires at least 5000 hours [33]. Myth EV DEV PRO

F6 Technical debt is unavoidable in real-world projects [35]. Myth EV DEV, ARC MNT, PROC

F7 Unintentional technical debt is much more problematic than intentional [35]. Myth EV DEV, MNT MNT

F8 Technical debt originates from short-term optimization [35]. Myth EV DEV, PM DSN, MNT

F9 Defect classes follow organization-specific patterns that can be detected within a given context [1]. Myth BUA, EV TST, DEV QUAL, PROC

F10 Developers are more likely to test when they feel ownership over the code [38]. Anecdote EV DEV TEST

F11 Testing is a tedious burden, far less exciting or rewarding than coding [38]. Anecdote EV, BUA DEV TEST

F12 If you are not sure what to do, do something and fix it later [1]. Myth BUA DEV CNST, MNT

F13 Personal artifacts and cluttered desks are part of work identity [24]. Artifact A DEV PRO

F14 Jokes, photocopies, and office memes circulate informally in teams [24]. Humor A ALL PRO

F15 Dead code removal improves performance and maintainability [27]. Myth EV DEV, MNT CNST, MNT

Most items are framed as myths—generalized beliefs rooted in

collective experience—particularly within software construction,

maintenance, and quality. These myths typically express espoused

values (e.g., F2–F3, F5–F8), but some reflect basic underlying as-

sumptions (e.g., F1, F4, F12), meaning they seem to be taken for

granted and are rarely questioned in practice.

For example, F1 disseminates the idea that the vast majority of

defects are interface defects. This item seems to operate as a basic

underlying assumption for developers and testers engaged in con-

struction, design, and quality work. F5 advances the claim that be-

coming an expert requires at least 5,000 hours. As an espoused value,

this item seems to deliver an encouraging message—sustained, fo-

cused effort is a route to deep SE competence. Shrikanth et al.’s

reassessment indicates that this rule holds only in some cases [33].

Novices often match experts in both speed and quality, suggesting

that experience adds little unless deliberate practice is in place.

Some entries are anecdotes (F10–F11)
4
or artifacts and humor

(F14), yet these still signal cultural identity, emotion, or irony that

guide team practices and shape social aspects of their work. Con-

sider F11, the anecdotal belief that testing is a tedious burden. This

item combines both espoused and underlying symbolic layers, indi-

cating perceived tensions around the value of testing (relative to

coding) that resonate in the testing area and across team cultures.

F13—the idea that personal artifacts and cluttered desks are part

of identity—is categorized as an item related to “artifacts”, as this be-

lief reveals how material environments carry symbolic importance

in practitioners’ self-expression and professional practice. Mean-

while, F4 (the 10𝑥 developer legend) is built on decades of stories

of mythical practitioners. This legend could potentially influence

hiring, team composition, and performance expectations, especially

among developers and project managers. These examples highlight

4
In our framing, an anecdote is a short, experience-based story used to illustrate a

point. We tagged items as anecdotes when they are situated accounts. For example,

F10 and F11 are commentaries made by interview participants in a specific case [38].

CHASE ’26, April 13–14, 2026, Rio de Janeiro, Brazil E. P. Enoiu et al.

how one can not only catalog folkloric content but also surface the

socio-cultural operations that underpin SE.

Qualitative analysis of the folklore items reveals several themes.

First,many beliefs serve as heuristics that simplify reasoning in techni-
cally complex situations. These include commonly repeated rules of

thumb, such as the fact that most defects occur at module interfaces

or that unintentional debt is worse than intentional debt, which

seem to provide practical guidance, despite such guidance often

lacking clear empirical grounding.

Other folklore items relate to identity-related dimensions of SE
work. The perception that testing is tedious or not rewarding [38],

or that a cluttered workspace is a sign of professional identity [24],

reflects deeper assumptions about roles, hierarchies, and belong-

ing. Similarly, the narrative of the 10𝑥 developer could reinforce

individualist identity ideals within organizational culture. Folklore
related to technical debt emerges as a particularly rich domain. Cul-

tural beliefs about the inevitability of debt and its connection to

short-term decision-making highlight organizational challenges.

Several folklore items appear to persist despite being challenged.

These include beliefs in the universal benefits of specific design

patterns and exaggerated claims about variations in developer per-

formance. Their durability may suggest that factors such as cultural

alignment, personal experience, intuition, and social reinforcement

often outweigh empirical evidence in shaping beliefs. In addition,

ritual and informality also hold significant folkloric meaning.

The “transmission” of folklore remains understudied. With few

exceptions—i.e., via community interactions [40] and through shared

project and learning practices [38]—there is little evidence or direct

investigation into how these beliefs are passed from one practi-

tioner to another, whether through mentorship, documentation,

onboarding, or socialization. There is a need to trace transmission

mechanisms to better understand how these practices persist and

evolve across different contexts and through various media.

3.3 Interview Study Results
In this section, we present the interview results organized into

practitioners’ general perceptions of folklore, concrete folkloric

forms (i.e., myths, anecdotes, rituals, artifacts, humor), and their

transmission and impact on SE work. The emerging themes con-

tribute directly to what constitutes SE folklore and how it can be

defined by grounding the concepts in practitioners’ accounts.

3.3.1 General Perceptions. Participants described SE folklore

as a lived and practical phenomenon that sits between what prac-

titioners say they do and what they actually do. Three emerging

themes capture these views: First Impressions of What Folklore Is,
Practice versus Ideals, and Cultural Expressions.

When asked what folklore meant, participants described it as

unwritten, informal, and often second-hand know-how, typically

shared through code reviews, onboarding, or hallway talk. Some

framed it as myths and jokes, while others saw it as beliefs without

direct evidence, overlapping with opinions and rules of thumb.

Because it functions implicitly, folklore is rarely named as folk-

lore; it persists in practice and only becomes visible on reflection

or when someone tries to spread it:

“P7: Stories with monsters in the [forest], but in software engineering, these are

beliefs. . . not supported by data or evidence.”

Participants perceived much of what circulates as “common wis-
dom” driven more by opinion than by evidence, yet still shaping

choices. They expressed that folklore captures the friction between

ideals and practice, with cultures influencing which stories take

hold and how they guide action:

“P12: I think it is that perception and reality and myth and what is actually hap-

pening... and also which is the culture, because I believe that [culture] also matters.

Even if you want to go against something, the culture forces you to come back and

follow the guidelines.”

Simultaneously, folklore was valued for its pragmatism, offering

workarounds and context that formal processes may lack.

Folklore was also described as something you can see in how

teams communicate. Participants pointed to national style differ-

ences in discourse and humor—for example, norms around constant

counter-argument or the tolerance for rougher jokes—as shaping

which stories get repeated:

“P5: We are a multicultural company, but... overall company culture promotes how

knowledge transfer happens... I did feel barriers because of peoples’ skill set.”

These views suggest that folklore is a constraint and an enabler.

3.3.2 Myths and Beliefs. Our analysis surfaced myths and be-

liefs. These beliefs act as shortcuts for coordination and justification,

but they also disrupt planning, resourcing, and evaluation. We orga-

nize findings into seven themes, comprising recurring subthemes.

Testing Myths: Participants described testing as both marginalized

and misunderstood. Testing was frequently framed as “minority
work” delegated to the least empowered roles.

“P1: As a tester, it is easy to be seen as a nitpicker... We will release the product as

soon as the testers stop finding problems. So we need to test less... So the testers

are the cause of the project delay.”

At the same time, code coverage is pushed as a KPI, leading

to performative activities to “hit the number”. Across teams, test-

ing was positioned as “less than” development—or “anyone can do
it”—which was perceived as deteriorating test competencies in the

organization. One participant mentioned that some practitioners

caricatured exploratory testing as quick and freestyle, overlooking

the structure and skill it requires.

Several participants noted automation myths, e.g., test automa-

tion being equated with progress. At the same time, automation’s

limits were understood as: “automation only covers the easy parts”.
Another participant mentioned the myth “AI will replace testers”.

Process Myths: Participants repeatedly encountered “silver bullet”-
type myths. For example, model-based SE (MBSE) was promoted as

a savior, with promises of fit, ease, and immediate benefits. When

benefits were delayed, blame shifted to immature teams rather than

to poor fit to the context:

“P7: Model-based development, or MBSE, holds great promise... But it has become

a myth that it is suitable for all software.”

Related to SE processes, themyth of a linear, sequential waterfall/V-

model process, where activities are completed and never revisited,

persisted even in organizations that practiced iterative work.

Folklore in Software Engineering:
A Definition and Conceptual Foundations CHASE ’26, April 13–14, 2026, Rio de Janeiro, Brazil

Hype and Status-Based Adoption: Some participants mentioned

that some choices were guided by hype and status in the commu-

nity rather than fit. One participant described half-baked research

repackaged as a product and sold via consultancy narratives.

Participants also discussed the myth that “newer means better”,
frequently coupled with the idea that all organizations should imi-

tate the practices of the largest tech companies, regardless of fit:

“P7: ...Wemust use a newway; this means it is better. Folklore here is that everything

new in SE is good. It is natural to have a sense that what is novel is good.”

“P8: ...this is how [big tech companies] do this thing. So that is why we should do

it... do we really have their scaling problems? It does not matter, you know?... It

says [big tech] on the box of this technology, so it must be ‘super awesome’... so

you [believe] the myth that it is good because it is from them.”

Developer Myths: Participants reported beliefs related to the prac-

tice of development. For example, “Code is your documentation”
rationalizes the use of code instead of other software artifacts (e.g.,

requirements, architectural designs) to document design decisions:

“P3: So they had very sporadic, unfinished documentation, very, very cryptic... I

heard the most famous quote from the previous team, which was like: Code is your

documentation... if you want to know how something works, look into the code...”

Other myths relate to the idea that code—once working—should

not be touched again, whether in the case of “mysteriously working”
code or code written by “perfect senior developers”:

“P4: ...we had a system where the documentation included who wrote a certain

code, and you could see the name. If the name was someone who had been there

for fifteen years, a very senior developer, there was a myth that you do not touch it.

It is basically perfect.”

Myths Shaping Planning and Resourcing: We identified several plan-

ning and resourcing narratives that combined classic myths with

organization-specific heuristics. The Mythical Man-Month myth

was mentioned, where managers added people thinking it would

make the project “go faster”. Teams described “multiply by pi” esti-
mation as a folk correction for optimism leading to poor estimation:

“P1: Ask the developer ...How long? ...A week... Project manager says, Multiply by

pi... I have seen people do that.”

Testers causing delays was a recurring accusation near release

gates, reinforcing some of the testing myths mentioned:

“P1: We will release the product as soon as the testers stop finding problems. So we

need to test less. . . So the testers are the cause of the project delay. [laugh] This is

such an anti-pattern: the deadline is the 1st of December, development is delayed,

so you squeeze the testing.”

The belief that “there is always a new release” was mentioned by a

participant, similarly “it can be fixed in software” justified shortcuts

and late requirement changes. Other myths also shaped the percep-

tion of participants: the “10-year rule”—the idea that a technology
must be proven for a decade to be adopted—and the “10𝑥 program-
mer” belief were mentioned as influencing hiring and allocation.

Several participants mentioned the belief that their project will be

“bug-free if the process is followed” to the letter:

“P7: Tollgate meetings: after these, the software magically works... things fall into

place once these tollgate meetings occur. Seems useful sometimes. Creates a false

sense of security in project planning...”

Teams in different organizations seem to oscillate betweenmethod-

freedom and heavy standards. In addition, the “1-week handover
myth” was noted, suggesting that experience and knowledge can

be fully documented and transferred on a schedule.

Agile Myths. Agile was reduced to rituals in some cases: “agile
means no requirements and documentation”. Daily stand-ups should

be productive, but participants mentioned that they can turn into

coordination and performative meetings. Role misunderstandings

seem to persist: “Scrum eliminates project managers”. Also, agile
adoption beliefs in software-intensive organizations often ignore

contextual constraints.

AI in SEMyths.AIwas framed as an inevitability. The fear of missing

out in AI was perceived as accelerating adoption without address-

ing problems: “AI will solve everything” supported one-size-fits-all

automation. At the same time, “AI will replace experts” fueled nar-

ratives around adoption.

3.3.3 Anecdotes and Legends. Our thematic analysis identified

four themes related to legends and anecdotal lore.

Control and Compliance Lore: Participants described a body of sto-

ries about compliance work, where legal and escrow tales circulate

as warnings. For example, a customer asked for the escrow pass-

word, which exposed a leak and became a cautionary tale. Other

stories of resistance to scaled processes, such as ad-hoc releases,

were mentioned.

Memory and Cautionary Lore: Practitioners maintain a living mem-

ory. For example, some expressed nostalgia for “the onsite good old
days” where software was made by small teams in a single location:

“P3: Ah, the good old times, we would just go there, we would sit, and we would

build the system and it would work because it was being made on the spot. But of

course this does not scale.”

Counteracting this, others discussed hype-cycle legends recount-

ing technologies embraced and later rolled back. These stories are

used to caution against trend-based adoption. In both cases, mem-

ory can act as a decision heuristic.

Legendary Bugs and Narrative Bias: Across interviews, several fail-
ure stories were repeatedly mentioned, including the “Denver bag-
gage failure”, “Therac-25”, and other classic failures:

“P5: There was an article in 1994 in Scientific American where they had this practical

example of the luggage system at Denver Airport. It delayed the opening of the

airport by six months or so and cost zillions of dollars... What they did not tell was

that just a few years after, everything was up and running, and the luggage system

paid back the investment and generated a profit.”

Participants acknowledged the spread of narrative bias—failures

are retold and amplified, whereas later successes receive little at-

tention. Nevertheless, these legendary bugs are treated as domain-

specific lessons that could influence practices.

Cautionary Tales about Testing and Design Debt: A fourth theme

centers around how design and testing choices are transformed

into folklore. Tales of designs that resist external demands reveal

workarounds that satisfy short-term pressure but create hidden

histories in artifacts—design decisions that future teams must de-

code. Hardware and software boundary tales persist as well—decoy

circuits are recounted as clever but debt-creating design decisions.

CHASE ’26, April 13–14, 2026, Rio de Janeiro, Brazil E. P. Enoiu et al.

In contrast, participants circulated positive narratives about how

architecture and design patterns enabled fast change.

Testing-related tales list routine development frictions—e.g., test-

ing is never-ending, clashes appear when test code owned by terri-

torial developers (“my baby” code) or “sacred” legacy modules are

owned by experts.

3.3.4 Rituals and Practices. Across interviews, participants de-
scribed rituals and practices that pass on know-how, coordinate

work, and sometimes shape behavior, clustering into five themes.

Reuse Practices: Participants described blind reuse without valida-

tion (“it worked there, reuse it here”) that later required costly rework,
and repeated naming conventions that embed hidden histories in ar-

tifacts (e.g., cryptic column names or inherited signal labels). Some

“superstitions” also persist, such as adding timing delays in test cases

or reset habits, which originated in manual testing but are now

used in automated tests.

Mentorship Patterns: Informal mentorship often takes the form of

withholding direct answers to develop further skill:

“P3: ...you could get [ten] questions that are leading you to get the answer... But it

was also a very unorthodox way of teaching someone. [...] But yeah, it was a drill

to prepare you for the environment when you go to the site... a very unorthodox

kind of mentor[ship].”

Also, weekly senior syncs offer a forum where experts share

stories, heuristics, and surface patterns. Together, these forms create

a channel to transmit knowledge.

Rituals as Social Glue and Morale Building: Teams use formal meet-

ings as bonding opportunities. Stand-ups are used for social ses-

sions; sprints are named after desserts with small rewards and

recurring syncs as team-building. These rituals seem to be used to

create belonging:

“P3: ...for the sprint name, we would choose some kind of a name for a cookie

or some dessert... and the reason was that if we managed to finish above [certain

threshold] of the tasks in that sprint, then we would get it at the sprint retrospective

or closing meeting.”

Community of Practice: Outside formal roles, engineers sustain their

community through voluntary coding meetups and discussions or

education around quality:

“P8: We have a few colleagues that meet up and do some programming online once

a week... it is also not typically [a] work-related thing. For instance, let us try out

some property-based testing, or something like that. A bit of fun, but also a bit of

learning and doing it together.”

These sessions provide places to explore new techniques. In

addition, keeping “quality” as a standing topic (e.g., code review

checklists, defect narratives) can be used to re-frame perceptions

around joint responsibility.

Rituals for Control, Learning, and (Sometimes) Surveillance: Certain
practices operate as a form of lightweight control over practition-

ers. Reviews and tollgates are treated as guarantees of quality and

progress. Coffee or lunch breaks function as informal problem-

solving sessions that seem to reduce silos and shared spaces were

repeatedly cited as places where stories travel. Work-from-home

mistrust was perceived as treating visibility as productivity, push-

ing in-person attendance rituals. Within SE practice, code review

is narrated as a form of collective learning; checklists sometimes

ensure rigor, but at times are used “for visibility”. Participants also
mentioned stand-ups as a form of surveillance (“tell me you are
working”) alongside standard planning practices that improved

alignment and shortened feedback loops.

3.3.5 Artifacts and Humor. We identified two emerging themes.

Humor as Coping and Critique: Practitioners signal difficulty, emo-

tion, and critique through jokes—e.g., the “backlog equals graveyard”
or “feature future” metaphor shows skepticism about using prioriti-

zation mechanisms to delay or silently cancel a feature, “drinking
because testing” frames testing as an ordeal, and “trolls explain
flaky systems” offers a playful story that normalizes intermittent

failures. Circulating texts, such as a printed quote sheet (i.e., catch-

phrases), provide a channel for critique and mentoring. Humor is

also a form of resistance—e.g., using a joke to challenge unrealistic

safety requirements or self-proclamation of oneself as a “pain in the
ass” to show pride in verification and quality gatekeeping efforts.

Newcomer socialization is evident in first-day jokes that motivate

and tease, introducing newcomers to local expectations. Finally,

cross-team banter that can go into blame cultures can be seen as a

double-edged sword: it can coordinate developers and testers, for

example, but when tensions rise, it can drift into stigma.

Meme Culture: Memes, generally in the form of images, are a spe-

cific form of humor often shared within teams. Memes resurface

when certain events recur, allowing practitioners to learn from

and remember past incidents. Memes are often created locally by

practitioners for their specific projects or histories, and are often

used to relieve hierarchical tensions (e.g., jokes about managers).

Several general memes were mentioned (some shown in Fig-

ure 2)—e.g., the “swing” meme (showing miscommunication about

requirements), the “silenced junior” (two cats fighting, with the

junior being silenced to avoid delaying a release), and “backlog and
fix it later”. One participant also mentioned the “this is fine” (shared
experience of living with chaos) and “real men test in production”
(warning about the implications of minimizing testing) memes.

3.3.6 Transmission and Impact. Participants described SE folk-

lore as both shaping choices and structuring how newcomers learn.

Perceived Impact of Folklore: Folklore affected decisions and the ev-

eryday environment. For example, model-based SE drove adoption

decisions and participants emphasized that the effects were both

harmful and helpful, depending on the context:

“P2: MBSE will be a big game changer...[a] decision to introduce MBSE... created a

lot of challenges... misunderstanding of when you get benefits.”

In routine interactions, folklore served as a way of teaching or

venting and was seen as generally helpful, yet this coexisted with an

explicit, mostly harmful verdict on folklore due to perceived costs

and for instilling non-evidenced beliefs. These doubts can affect

which folklore items are introduced to newcomers and sustained.

On-boarding Transmission: The first transmission seems to occur

during on-boarding. Memes used in on-boarding create shared ref-

erences, often flowing from senior to junior alongside cautionary

tales. In some teams, deliberately minimal or cryptic documenta-

tion also seems to push newcomers to lean on folklore. This early

shaping seems to connect later to patterns.

Folklore in Software Engineering:
A Definition and Conceptual Foundations CHASE ’26, April 13–14, 2026, Rio de Janeiro, Brazil

Figure 2: Illustrative examples of transmitted memes referenced in the interviews.

Implicit and Informal Transmission. Once inside the team, quiet

norms can repress questioning, while humor can influence the

team climate. At the same time, small talk can help in building a

sense of belonging. Folklore seems to be recognized upon reflection:

“P4: ...this is something we have been unconsciously seeing and practicing and

doing, but we have never formally looked at it or thought about it.”

On-boarding stories continue to circulate, and some beliefs are

transmitted in one-to-one discussions.

Transmission Mechanisms: These flows seem to be amplified by

where and how practitioners meet. Rumors become known, espe-

cially as they are retold in common areas—e.g., coffee or lunch

rooms—which become sites for sharing stories and lessons:

“P9: People already assume that they know the whole picture... and they start

spreading that as if it is the gospel.”

Here, informal leaders and lived experience seem to set norms.

However, language and cultural barriers can impede participation,

shaping who speaks, who listens, and whose lessons are told.

Mediators: Verification leads are seen as practitioners who counter

misconceptions and can change narratives, particularly where some

organizations use experimentation. In other cases, some companies

seem to allow beliefs to persist.

Scope and Impact: Just a few participants reported little to no SE-

specific folklore within their organizations, expressing that many

of these stories or practices are general to all workplaces. Another

participant mentioned that “negative folklore” seems to fuel public

mistrust of software and SE.

Organizational Culture: Folklore seems to vary by role and orga-

nization, and is influenced by company climate. One participant

mentioned that team shuffling is a way of refreshing folklore by

moving narratives across groups. The size of the organizations

could matter too, with one participant mentioning that small firms

they were part of are less ritualistic, while large firms accumulate

such rituals more often.

Educational Channels: Computer science courses often leave stu-

dents thinking “code solves everything” and that attitude seems to

carry into practice. Some practitioners, especially juniors, also fix-

ate on specific programming languages, a preference that tends to

soften with experience.

Community Transmission: Practitioner schools-of-thought and skep-
ticism of academic research can shape what folklore teams accept.

External channels (i.e., talks by well-known figures, conferences)

propagate beliefs, seeding narratives that reappear in practice.

Folklore Transfer: Participants mentioned evolving forms of transfer

across careers. Early-career “bucket filling” involves practitioners
accumulating narratives, they consolidate them mid-career, and

veterans become set in their way of working (“we tried that”):

“P11: They tried something, I do not know, 25 years ago, and then they keep saying

‘we tried that once. It is not gonna work’... but because of this old story, they do not

want to even try...”

3.4 A Software Engineering Folklore Definition
Software development in industrial settings, particularly within

occupational groups, offers a ground for understanding how folk-

lore manifests in SE environments [31]. By applying Alan Dun-

des’ characterization—focused on folk groups, informal transmis-

sion, and tradition—and Simon J. Bronner’s [8] practice-centered

description—emphasizing praxis, knowledge in action, and phemic

processes—we can explore how software development teams culti-

vate occupational folklore through practices, rituals, and traditions.

Based on Dundes’ description, folklore is “traditional knowl-

edge transmitted informally within folk groups” [12]. Knowledge

is passed through experience, mentorship, or casual interaction

rather than formal instruction, while practices and expressions are

repeated with variations across teams and projects. The occupa-
tional group categorizations presented in Table 4 provide a basis

for understanding how folklore manifests and functions within SE

communities. For example, software testers, designers, and develop-
ers can form distinct folk groups. Folklore in software development

can help create and reinforce group identity. Informal communica-

tion channels can serve as transmission vehicles for occupational

traditions, shaping how teams work and interact. Our analysis

uses a folklore lens (function, transmission, persistence, variation),

CHASE ’26, April 13–14, 2026, Rio de Janeiro, Brazil E. P. Enoiu et al.

but shows only a partial view. Without longitudinal data or cross-

community circulation evidence, claims about folklore evolution

remain interpretive.

Bronner represents folklore as “traditional knowledge put into,

and drawing from, practice” [8]. In this explanation, folklore refers

to how individuals enact traditions through their daily activities.

Consistent with Bronner’s practice lens, Enoiu’s essay [14] illus-

trates how software testing preconceptions and routines circulate

as lore, shaping testers’ activities. Thus, actions and expressions

can carry suggestive meanings, shaping cultural identity, and folk-

lore emerges through the actual activity of testing software, not

just through verbal communication. As shown in Table 3 and Ta-

ble 4—as well as the themes surfaced in the interviews—folklore is

deeply embedded in software development. Practices like testing,

programming, reviews, deployments, and retrospectives often take

the form of ritualized actions that carry symbolic meaning and help

teams navigate complex work environments. Folklore lies in the

praxis of these activities and how they are performed, adapted, and

symbolized. In addition, following Bronner’s notion of folklore as a

communicative process integrated in social practices, our definition

should emphasize not just what folklore items say, but how and

when they are performed.

We synthesize concepts across (1) the folkloristic characteriza-

tions and dimensions, (2) the folklore items from literature, and (3)

the thematic results from interviews. Building on the folkloristic,

we consider the informality of transmission and praxis as foun-

dational principles, both traditional and emergent. The literature

review pinpoints the forms these take in SE as narratives and heuris-

tics. Finally, the interviews show these elements in reality—myths,

stories, memes, rituals, and practices that actively shape identity,

values, and shared know-how across occupational folk groups and

knowledge areas. We propose the following definition:

Software engineering folklore, comprising informally
transmitted, traditional, and emergent narratives, heuris-
tics, and artifacts enacted by practitioners, circulates
within occupational folk groups (e.g., developers, testers,
and managers) and shapes identity, values, and collec-
tive knowledge throughout the socio-technical ecosys-
tem of software development.

This definition highlights the informal nature of knowledge and

practices within occupational SE groups. Future research on this

topic should further develop this definition and its underlying di-

mensions and forms, and validate the folklore concepts.

4 Implications and Applications of SE Folklore
To operationalize our definition of SE folklore, one would need to

treat a folk item as a unit of analysis and evaluate it against the

criteria and analytical dimensions (i.e., form, meaning, transmission,

spread, practice, and relevance) to enable comparison and analysis.

For engineers, managers, and team leads, understanding folklore

can support more thoughtful cultural and organizational interven-

tions. Practically, this involves identifying persistent narratives and

reflecting on their origins, usefulness, and limitations, recognizing

when narratives indicate resistance to change or when they are

needed to make implicit cultural norms visible. By viewing folklore

not as problematic or negative but as cultural knowledge, teams

can examine unhelpful stories or beliefs while preserving practices

that are effective in their context and that reflect their values.

For researchers in empirical SE and socio-technical systems, folk-

lore offers a lens for examining the lived realities of software teams.

The identification of folklore in SE opens the door to empirical and

interpretive studies that investigate the human, cultural, and narra-

tive dimensions of tech work. Longitudinal, immersive fieldwork

in software teams can surface informal beliefs, rituals, and artifacts

that shape practices. Such ethnographic studies [41] are well-suited

for uncovering knowledge and group identity. Retrospective ac-

counts and oral history can show how SE teams’ stories become

folklore and how beliefs shift over time [5].

5 Threats to Validity
We adapted folkloristics to SE, which may shape how folklore is

identified and described; future work should refine these constructs

with more practitioner input and comparative analysis among re-

searchers. Our literature review also relied on a small, purposively

selected sample and an informal search. Therefore, a more system-

atic protocol that includes grey literature is needed. Further, the

interview study and the thematic analyses of the identified folklore

items are subject to the authors’ biases. To mitigate this threat, the

coding was performed independently by all authors, then iteratively

validated. Disagreements were discussed, resulting in only a few

revisions. In addition, our convenience sampling and limited de-

mographic diversity, particularly a skew toward more experienced

participants, may bias the themes toward patterns typical of that

group. This limitation may restrict generalizability across other

experience levels, roles, and organizational contexts. These limita-

tions define the scope of the current work but do not undermine its

core contributions in exploring and defining SE folklore. Address-

ing them in future research will help build a more comprehensive

and actionable understanding of SE folklore.

6 Conclusions
Drawing on foundational ideas from folklore studies, literature,

and an interview study, we have proposed a working definition

that characterizes SE folklore as informally shared, traditional, and

evolving narratives integral to everyday SE practice. As in other

fields, folklore can function not only as a source of informal knowl-

edge but also as a means of creating identity group cohesion and

managing uncertainty in complex social environments. Recogniz-

ing the role of SE folklore has both practical and theoretical value.

For practitioners, it creates opportunities to reflect on norms, chal-

lenge myths, and maintain positive customs. For researchers, it

opens up new directions for investigation, including ethnographic

and folklore studies, comparative analysis across domains, and

methodological tools.

Acknowledgments
Support was provided by the Software Center project 68 (TRACE)

and MONA LISA (ITEA) project funded by Vinnova. Enoiu was

also supported through the AI and Society Fellowship (AI@MDU).

We thank Alex Cusmaru for his input and valuable discussions on

the SE folklore concept and an earlier version of the manuscript.

Folklore in Software Engineering:
A Definition and Conceptual Foundations CHASE ’26, April 13–14, 2026, Rio de Janeiro, Brazil

References
[1] Victor Basili and Forrest Shull. 2005. Evolving defect ’folklore’: a cross-study

analysis of software defect behavior. In Software Process Workshop. Springer,
1–9.

[2] Dan Ben-Amos. 1971. Toward a definition of folklore in context. The Journal of
American Folklore, 84, 331, 3–15.

[3] Kurt W Beyer. 2012. Grace Hopper and the invention of the information age. Mit

Press.

[4] Alexander Boden, Gabriela Avram, LiamBannon, and VolkerWulf. 2012. Knowl-

edge sharing practices and the impact of cultural factors: reflections on two

case studies of offshoring in sme. Journal of software: Evolution and Process, 24,
2, 139–152.

[5] Joanna Bornat et al. 2004. Oral history. Qualitative Research Practice, SAGE,
34–47.

[6] Laurent Bossavit. 2017. The Leprechauns of Software Engineering: How folklore
turns into fact and what to do about it. Leanpub.

[7] Virginia Braun and Victoria Clarke. 2006-01-01. Using thematic analysis in

psychology. Qualitative Research in Psychology, 3, 2, 77, 101.
[8] Simon J Bronner. 2016. Folklore: the basics. Routledge.
[9] Simon J Bronner. 2016. Toward a definition of folklore in practice. Cultural

Analysis, 15, 1, 6–28.
[10] Simon J. Bronner, (Ed.) 2007. Meaning of Folklore: The Analytical Essays of Alan

Dundes. University Press of Colorado. isbn: 9780874216837. Retrieved July 24,

2025 from http://www.jstor.org/stable/j.ctt4cgrzn.

[11] Paolo Ciancarini, Mirko Farina, Ozioma Okonicha, Marina Smirnova, and

Giancarlo Succi. 2023. Software as storytelling: a systematic literature review.

Computer Science Review, 47, 100517.
[12] Alan Dundes. 1965. On computers and folk tales.Western Folklore, 24, 3, 185–

189.

[13] Alan Dundes. 2019. Who are the folk? In Frontiers of Folklore. Routledge, 17–35.
[14] Eduard Paul Enoiu. 2025. An essay on the role of folklore in software engineer-

ing: preconceptions and their meaning in software testing and test automation.

Software Center Reporting Workshop.
[15] Daniel Méndez Fernández and Jan-Hendrik Passoth. 2019. Empirical software

engineering: from discipline to interdiscipline. Journal of Systems and Software,
148, 170–179.

[16] Robert L Glass. 2002. Facts and fallacies of software engineering. Addison-Wesley

Professional.

[17] E Sidney Hartland. 1891. Report on folk-tale research in 1889-1890. Folklore, 2,
1, 99–119.

[18] Claire Ingram and Anders Drachen. 2020. How software practitioners use

informal local meetups to share software engineering knowledge. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering, 161–
173.

[19] Joseph Jacobs. 1893. The folk. Folklore, 4, 2, 233–238.
[20] Peggy Aldrich Kidwell. 2002. Stalking the elusive computer bug. IEEE Annals

of the History of Computing, 20, 4, 5–9.
[21] Johan Linåker, SardarMuhammad Sulaman, Rafael Maiani deMello, andMartin

Höst. 2015. Guidelines for conducting surveys in software engineering.

[22] Wayne G Lutters and Carolyn B Seaman. 2007. Revealing actual documentation

usage in software maintenance through war stories. Information and Software
Technology, 49, 6, 576–587.

[23] André N Meyer, Earl T Barr, Christian Bird, and Thomas Zimmermann. 2019.

Today was a good day: the daily life of software developers. IEEE Transactions
on Software Engineering, 47, 5, 863–880.

[24] Laura J. Neumann. 1999. Paper, piles, and computer files: folklore of information

work environments. Library trends, 47, 3, 439–469.
[25] Carol Passos, Ana Paula Braun, Daniela S Cruzes, and Manoel Mendonca. 2011.

Analyzing the impact of beliefs in software project practices. In International
Symposium on Empirical Software Engineering and Measurement. IEEE, 444–452.

[26] Donald J Reifer. 2013. Software war stories: Case studies in software management.
John Wiley & Sons.

[27] Simone Romano, Giovanni Toriello, Pietro Cassieri, Rita Francese, and Giuseppe

Scanniello. 2024. A folklore confirmation on the removal of dead code. In

Proceedings of the 28th International Conference on Evaluation and Assessment
in Software Engineering (EASE). ACM, 333–338.

[28] Sharon Ryan and Rory V O’Connor. 2013. Acquiring and sharing tacit knowl-

edge in software development teams: an empirical study. Information and
software technology, 55, 9, 1614–1624.

[29] Edgar H Schein. 2010. Organizational culture and leadership. Vol. 4. John Wiley

& Sons.

[30] Helen Sharp, Yvonne Dittrich, and Cleidson RB De Souza. 2016. The role

of ethnographic studies in empirical software engineering. Transactions on
Software Engineering, IEEE, 42, 8, 786–804.

[31] Mary Shaw. 2002. Prospects for an engineering discipline of software. IEEE
Software, 7, 6, 15–24.

[32] N. C. Shrikanth and Tim Menzies. 2020. Assessing practitioner beliefs about

software defect prediction. In International Conference on Software Engineering
(ICSE): Software Engineering in Practice. IEEE, 182–190.

[33] N. C. Shrikanth, William Nichols, Fahmid Morshed Fahid, and Tim Menzies.

2021. Assessing practitioner beliefs about software engineering: an empirical

investigation. Empirical Software Engineering, 26, 4, 73.
[34] Forrest Shull. 2012. I believe! IEEE Software, 29, 1, 3–4. doi:10.1109/MS.2012.10.

[35] Rodrigo O Spínola, Antonio Vetrò, Nico Zazworka, Carolyn Seaman, and For-

rest Shull. 2013. Investigating technical debt folklore: shedding some light on

technical debt opinion. In International Workshop on Managing Technical Debt
(MTD). IEEE, 1–7.

[36] Per Erik Strandberg. 2019. Ethical interviews in software engineering. In 2019
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). IEEE, 1–11.

[37] Lucille Alice Suchman. 1987. Plans and situated actions: The problem of human-
machine communication. Cambridge university press.

[38] Mark Swillus, Rashina Hoda, and Andy Zaidman. 2024. Who cares about

testing? co-creations of socio-technical software testing experiences. arXiv
preprint arXiv:2504.07208.

[39] Stith Thompson. 1951. Folklore at midcentury. Midwest Folklore, 1, 1, 5–12.
[40] Alexey Zagalsky. 2018. Knowledge Building in Software Developer Communities.

Ph.D. Dissertation. University of Victoria.

[41] He Zhang, Xin Huang, Xin Zhou, Huang Huang, and Muhammad Ali Babar.

2019. Ethnographic research in software engineering: a critical review and

checklist. In Proceedings of the Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ACM,

659–670.

http://www.jstor.org/stable/j.ctt4cgrzn
https://doi.org/10.1109/MS.2012.10

	Abstract
	1 Introduction
	2 Research Method
	2.1 Folklore Definitions and Dimensions
	2.2 Software Engineering Folklore Concepts
	2.3 Interview Study

	3 Findings
	3.1 SE Folklore in the Literature
	3.2 Analysis of the Identified Folklore Items
	3.3 Interview Study Results
	3.4 A Software Engineering Folklore Definition

	4 Implications and Applications of SE Folklore
	5 Threats to Validity
	6 Conclusions
	Acknowledgments

