
From Logs to Lessons: An Exploration of LLM-based Log
Summarization for Debugging Automotive Software
Anton Ekström∗

Hampus Rhedin Stam∗

antoneks@student.chalmers.se
rhedinh@student.chalmers.se

Chalmers University of Technology
and University of Gothenburg

Gothenburg, Sweden

Francisco Gomes de Oliveira
Neto

Gregory Gay∗
francisco.gomes@cse.gu.se

greg@greggay.com
Chalmers University of Technology

and University of Gothenburg
Gothenburg, Sweden

Sabina Edenlund
sabina.edenlund@volvocars.com

Volvo Cars AB
Gothenburg, Sweden

Abstract
Identifying where faults occur is an essential part of debugging, yet
examining extensive system logs can be slow and mentally demand-
ing, especially in complex software environments. One emerging
strategy to enhance log analysis is to employ large language models
(LLMs) to distill log information into more manageable summaries
that can guide human reasoning during diagnosis. We report on a
case study carried out in an automotive setting, where engineers
investigated actual failures with and without support from an LLM-
based summarization tool. During fault localization sessions where
participants analyzed real failure logs, we collected cognitive load
measurements, observed their reasoning processes, and gathered
feedback on both the LLM-based summarization and the workflow
through post-session interviews. Our results indicate that although
the use of summaries raised certain cognitive demands, particularly
related to mental effort and time pressure, participants experienced
less frustration overall and considered the support helpful in focus-
ing their attention. They also expressed a clear interest in being
able to shape and refine summaries as their understanding evolved.
These findings offer insights into how LLM-generated summaries
influence practitioners’ diagnostic work and point toward the need
for more adaptive, interactive, and workflow-aware support.

CCS Concepts
• Software and its engineering → Software testing and de-
bugging; Embedded software; • Human-centered computing →
Interaction design.

Keywords
Automated Software Engineering, Debugging, Large Language
Models, Software Logs, Log Analysis

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
AST’26, Rio de Janeiro, Brazil
© 2026 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Anton Ekström, Hampus Rhedin Stam, Francisco Gomes de Oliveira Neto,
Gregory Gay, and Sabina Edenlund. 2026. From Logs to Lessons: An Ex-
ploration of LLM-based Log Summarization for Debugging Automotive
Software. In Proceedings of Automated Software Test (AST’26). ACM, New
York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Fault localization is a critical early step in debugging software sys-
tems, allowing developers to identify where faults occur before
addressing their root causes [33]. In modern software development,
this process often involves extensive log analysis, which can be time-
consuming and labor-intensive, particularly in large and complex
systems such as those in the automotive domain [22, 26]. Another
key challenge is the lack of standardized log formats, as many sys-
tems rely on proprietary or niche formats [22, 26]. This variability
often requires format-specific tools or workarounds, leading to
duplicated effort and higher testing costs [3].

Recent advances in large language models (LLMs) have opened
new opportunities to support software engineering workflows [19,
31, 32]. First, LLMs are particularly well suited for processing un-
structured text. Second, widely used formats may already be repre-
sented in their training data, while proprietary formats could be
incorporated through in-context learning [13, 24]. Consequently,
we argue that LLMs are a promising candidate for assisting in log
analysis and summarization. We explore whether LLM-generated
log summaries can help practitioners manage the cognitive and
practical demands of fault localization tasks in an industrial setting.

We conducted a study in collaboration with a European automo-
tive company, Volvo Cars AB, focusing on the use of an LLM-based
log summarization tool to support fault localization. We conducted
think-aloud sessions with practitioners, measured cognitive load
using the NASA Task Load Index [17], and complemented these
results with a thematic analysis of post-session interviews.

Our findings show that while cognitive load did not decrease
overall, LLM-assisted sessions yielded lower frustration scores and
surfaced clear practitioner expectations regarding tool interactivity.
Participants emphasized the potential of such tools to automate
repetitive steps and support iterative workflows, aligning with
broader goals of improving productivity and user experience in
software testing. In summary, the contributions of our paper are:

• An empirical study on LLM-based log summarization in the
context of fault localization within the automotive industry.

https://orcid.org/0009-0009-8241-4883
https://orcid.org/0009-0003-4418-2491
https://orcid.org/0000-0001-9226-5417
https://orcid.org/0000-0001-9226-5417
https://orcid.org/0000-0001-6794-9585
https://orcid.org/0009-0007-2906-5974
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

AST’26, April 12–18, 2026, Rio de Janeiro, Brazil Ekström et al.

• Quantitative and qualitative insights into the impact of LLM-
generated summaries on cognitive load, user satisfaction,
and workflow.

• Recommendations for improving human-LLM interaction in
log analysis tools, including interactivity, automation, and
integration into existing workflows.

2 Background
Here we explain key concepts related to the instrumentation and
evaluation of our approach. The section introduces fault localiza-
tion, log summarization, and the use of large language models
(LLMs) to support these processes.

The aim of the fault localization process is to isolate the cause
and/or source code location responsible for an observed test fail-
ure [1, 33]. This process typically involves inspection of software
artifacts including source code, test cases, issue reports, and logs
recorded during program execution [33]. These artifacts are used
as part of (i) anomaly detection, i.e., identification of abnormal
and erroneous program behavior, (ii) localization of code elements
that contribute to the failure, and (iii) root cause analysis to ex-
plain the underlying reason for the failure [14, 18]. Fault localiza-
tion can be performed manually, with tool assistance, or—in some
cases—fully automated. The fault localization process is typically
time-consuming and relies heavily on developers’ intuition and
experience, leading to great interest in approaches that support or
automate aspects of the process [24].

To enhance fault localization and reduce the required manual
effort, log analysis is often used to provide additional context and
evidence during debugging [18, 22]. However, the lack of standard-
ized log formats can make this analysis challenging [22]. Many
formats follow similar structures where events or messages are
recorded during the execution of the software, generally in chrono-
logical order and associated with a timestamp of their occurrence,
potentially with associated metadata such as screenshots or other
supporting data [3]. Log files may come from a live production
environment, but may also be created after execution based on
observations gathered during the execution.

Given the volume and level of detail contained in log information,
practitioners can benefit from a summarized view that highlights
the most relevant elements. Log summarization refers to the pro-
cess of condensing the contents of a log, or a segment of it, to make
them more accessible and easier to interpret [15]. Since logs are
typically long and require significant effort to examine, automated
summarization can help accelerate and simplify analyses [15].

In turn, Large Language Models (LLMs) are complex machine
learning models suited for language analysis and transformation
tasks such as translation, summarization, and decision support [37].
LLMs take as input instructions in the form of a prompt [8]. LLMs
then iteratively and probabilistically predict the next token—a basic
unit of text—to add to the generated output [37]. Because of their
ability to analyze and output both natural language and code, LLMs
are well-suited for software development tasks including test gen-
eration [31], fault localization [19], and program repair [34]. Here,
we investigate their ability to perform log summarization.

An LLM and a human may not draw the same meaning from a
prompt, which has led to the development of different prompting

Commit code Trigger CI
pipeline

Generate
failure reports

Developer Tester

Unit
Tests

Component
Tests

Domain
Tests

Complete
Tests

Levels of Testing

Build and Test Logs

Figure 1: Overview of the log analysis process.

strategies. Zero-shot prompts contain only instructions on how to
produce the expected output, while one-shot or few-shot prompts
provide one or more examples of input and expected output [20, 24].
Chain-of-thought (CoT) prompting instructs the LLM to perform
step-by-step reasoning steps [20]. In addition to how the model is
prompt, the information given in the prompt can also affect the
LLM’s output. In-context learning refers to the incorporation of
additional contextual information into the prompt, such as project-
specific details (e.g., coding guidelines, design artifacts, and code
dependencies) to guide the model’s output more effectively. The
ability of an LLM to process prompts and external data is limited
by its context window—the number of tokens that it can hold in
memory [15]. For example, a full software log may exceed this limit,
thus introducing the need for summarization [15].

2.1 Case Study Context
The case study was conducted at Volvo Cars AB, a prominent auto-
mobile manufacturer headquartered in Europe. We worked with a
team consisting of five developers to create and modify an LLM-
based log summarization tool.

Similarly to other automotive companies [6, 29], and in line with
safety regulations in the automotive industry, Volvo Cars ABfollows
a modified V-Model that defines four levels of testing granularity:
unit, component, domain, and complete system. Figure 1 provides
a simplified overview of how failing tests are handled. Unit test
failures are small in scope and can be addressed directly by the
developers responsible for the affected modules. However, at higher
levels of abstraction, specialized testers with a broader understand-
ing of the system are responsible for analyzing failures. After code is
committed to a repository, the Continuous Integration (CI) pipeline
executes the test suite. When tests fail, a tester analyzes the log files
created during the execution to localize the potential fault, creates
a fault report, and assigns the issue to the appropriate team.

Testers at Volvo Cars AB tend to be highly specialized in specific
domain areas, since each module is developed by different teams
and requires a certain expertise to debug effectively. Practitioners
rely heavily on their knowledge and past experiences with similar
issues when they are localizing a fault. Consequently, the fault
localization process is heavily dependent on log files generated
in multiple formats during test execution. These log files can be
very large—up to several gigabytes in extreme cases. Currently,
developers analyze logs in a largely manual process, using their

From Logs to Lessons: An Exploration of LLM-based Log Summarization for Debugging Automotive Software AST’26, April 12–18, 2026, Rio de Janeiro, Brazil

Summary
- The log contains entries from two distinct sessions:

- **Session: ECU1** Error indexed at [62]
- **Session: ECU2** Error indexed at [64]

- Both sessions reported the same error 32 times, classified as 'error'.
- The error description in both sessions indicates a failure in the

`ClientImpl:ConnectAgent` process.
- The specific cause of the error is "connect failed: No route to host,

endpoint: MASK.1.2.3:MASK", suggesting a network connectivity issue.

Suggestions
- Investigate the network settings and route configurations for both sessions

to identify and correct any incorrect routing or configurations.
- Ensure that the host's network is properly set up to allow connections to

the endpoint specified (MASK.1.2.3:MASK).

Listing 1: Example of a summary that has been generated by
the LLM-based log summarization tool.

own experience and intuition, as well as keyword searches, to filter
log files and localize failures. Therefore, there is great interest in
support for log analysis and summarization.

3 LLM-based Log Summarization
In this study, we have extended and evaluated an LLM-based log
summarization tool developed for use at Volvo Cars AB. The tool
uses GPT-4o (version 2024-08-01-preview) to summarize data. Fig-
ure 2 illustrates the user workflow.

The user begins by uploading a log file to be summarized through
a web application. They can then optionally apply filters and cus-
tomize the instructions for the LLM—e.g., adding a simple descrip-
tion of the error or keywords to filter messages. The user then
waits for the tool to finish processing the log file and downloads
the summary in Markdown format. The LLM has been instructed to
highlight the most relevant messages in the log file, and to provide
suggestions on how to further investigate the issue. An example of
the summary can be seen in Listing 1.

The tool supports summarization of two log formats in use at
the company: Diagnostic Log and Trace (DLT) and One Software
Download Body (OSB). Both logs consist of timestamped messages
describing the status of the system during execution. DLT is an
open standard used in the automotive industry [5], while OSB is a
proprietary format used by Volvo Cars AB. Both log formats can be
categorized as platform logs [22]. The initial tool supported only
DLT, and support for OSB was added as part of this study, as the
format is also in wide use across the company.

After receiving the logs, the tool follows the steps illustrated in
the highlighted area of Figure 2. Since individual log files can be
very large (e.g., hundreds of megabytes to more than a gigabyte),
the tool leverages a MapReduce architecture, which applies parallel
processing to improve the efficiency of handling large datasets [11].

This architecture structures processing into two stages, called
“map” and “reduce”. During the “map” phase, a log is broken into
smaller “chunks,” which are processed by the LLM in parallel. Then,
during the “reduce” stage, the summaries of the chunks are merged
by the LLM and the final output is returned.

• Pre-process logs: Log files are cleaned to reduce their size
by removing unnecessary information. Specific characters
are stripped, and the logs are segmented so that each segment
corresponds to a single logging session.

You are a senior software engineer. Your task is to summarize logs. The logs

given to you are divided into sessions following this format:
```
START <session title>
[<index>] <occurrence count> <log type>: <payload>
END
```
Log to be summarized: <LOG CHUNK>

Use the session title when pointing to a specific session. Mention the index

when pointing to a specific message. Draft the summary following these steps:
1. Read and understand the relation among the occurrence count, log type

and the payload.
2. Point out the important errors in the log and identify potential root

causes of the errors.
3. Organize information and write a concise summary. Avoid using vague or

overly general words.
4. Revise to remove any redundant information.

Listing 2: Prompt template for the map stage.

You are a senior software engineer. Your task is to summarize logs. Given the
following summaries of different parts of the same log,combine them into a
concise summary.

Provided summaries: <CHUNK SUMMARIES>

Draft the summary following these steps:
1. Identify common points among the summaries. These will be the backbone

of the final summary.
2. Point out unique information in each summary. These could be important

details.
3. Organize information and write a concise summary. Avoid using vague or

overly general words.
4. Provide suggestions to resolve the errors. Be specific and actionable.
5. Write the final summary in formatted Markdown.

Example: {{
\#\# Summary
- Problem 1

- Session 1 (index 123)
- Session 2 (index 456)

- Problem 2
\#\# Suggestions
- Suggestion 1
- Suggestion 2

}}

Final Summary:

Listing 3: Prompt template for the reduce stage.

• Split data: Processed logs are divided into chunks based on
the available context window. Each chunk contains as many
complete segments as possible to optimize the input size.

• Summarize chunks (“map”): Each chunk is embedded in
a prompt template and sent to a separate LLM instance with
a fresh context. All chunks are processed in parallel and in
isolation. The prompt instructs the LLM to summarize the
key information in each chunk.

• Combine chunks (“reduce”): After all chunks have been
summarized, the resulting summaries are merged in a final
step. The LLM receives all intermediate summaries in a single
prompt and produces one consolidated summary.

The prompts used in our approach include a role and a set of
instructions to the LLM (but no examples of responses to sample
inputs, i.e., zero-shot [21]). We developed the prompts over multiple
iterations. The basic prompt template for an individual chunk in
the map stage is shown in Listing 2, whereas the prompt template
for the reduce stage are shown in Listing 3. The specific prompts
vary by log format.

AST’26, April 12–18, 2026, Rio de Janeiro, Brazil Ekström et al.

Upload log
file

Choose and
confirm settings

Download log
summary

Pre-process
log file

Split log into
chunks

Summarize
chunks (Map)

Combine chunks
(Reduce)

Log File Job configuration
and logs

Cleaned log
messages

Log chunks
(segmented) Chunk summaries Chunk summary Summary Repot

(Markdown)

LLM Integration

1 2 3 4 5 6 7

Tester

Figure 2: Workflow of a user interacting with the LLM-based log summarization tool. The tasks within the highlighted area are
integrated with the LLM used to summarize the logs.

4 Methods
Our primary goal was to explore the impact of LLM-based log
summarization on the log analysis workflow at Volvo Cars AB. Our
case study is framed using the guidelines by Runeson and Höst [28].
In particular, we address the following research questions:

RQ1: How does LLM-based log summarization affect the
cognitive load of practitioners?
RQ2: How does LLM-based log summarization affect the
satisfaction level of practitioners?
RQ3: How does LLM-based log summarization impact exist-
ing log analysis workflows?

Cognitive load is a major component of developer productiv-
ity [25] and, for RQ1, we associate it with the ability to parse,
learn, and retain information from logs. RQ2 assesses practitioner
satisfaction—another core component of productivity that plays
a significant role in tool adoption [16]. Lastly, RQ3 explores how
the practitioners’ log analysis workflow may be affected by the
LLM-based log summarization tool, and the potential benefits or
drawbacks of the use of this tool as part of their workflow.

Figure 3 illustrates the activities conducted to address the re-
search questions. Data was collected through think-aloud sessions
in which participants performed fault localization either manually
or with support from the LLM-based summarization tool, followed
by semi-structured interviews. Cognitive load was measured using
the NASA Task Load Index [17]. Practitioner satisfaction and per-
ceived workflow impact were examined through thematic analysis
of interview transcripts and notes from the think-aloud sessions.

4.1 Participant Sampling and Data Collection
Table 1 presents the participants of our study. Participants were
selected using convenience sampling based on their availability
and domain area expertise relative to the faults to be localized. All
participants work with fault localization daily.

Participants were selected in pairs, where both participants were
specialized in the same domain area. Sessions were then carried out
individually for one participant at a time. Participants that were
experienced in the same domain area tended to be work in the same
or adjacent teams. Therefore, they were instructed not to speak to
each other about the fault.

The study was carried out in individual sessions with each par-
ticipant. Each session consisted of (i) a think-aloud observation

Create LLM-
based summary

1.1

LLM-based
summarisation

NASA TLX
scores

Notes from
session

RQ1

Interview
transcripts

RQ2

Thematic
map

RQ2

Conduct Think-
aloud session

2

Collect cognitive
load measures

3

Conduct post-
session

interview

4

Conduct
thematic
analysis

5

Failure report
and logs

Manual
Treatment

AI
Treatment

Receive a CI
failure

1

Evaluation

RQ2

RQ3

RQ1

RQ3

RQ3

Figure 3: Overview of the performed research activities
(rounded rectangles), and corresponding research artifacts
(rectangles). We indicate which research artifact is used to
answer the different research questions.

where they were tasked with localizing a real fault (with or without
the LLM-based log summarization tool), (ii) assessment of cognitive
load based on the NASA Task Load Index, and (iii) a semi-structured
interview. Half of the sessions were conducted using the LLM-based

From Logs to Lessons: An Exploration of LLM-based Log Summarization for Debugging Automotive Software AST’26, April 12–18, 2026, Rio de Janeiro, Brazil

Table 1: Demographic information, including years of ex-
perience at company and with fault localization, levels of
granularity that they typically work at, which faults they
analyzed in the experiment, and whether they assessed that
fault manually or with the LLM-based tool.

ID Experience Test Level Fault ID Treatment
Comp. Fault Loc.

P1 9 13 All levels F1 AI
F2 Manual

P2 3.5 18 All levels F1 Manual
F2 AI

P3 3.5 3.5 Component / Domain F3 AI
P4 2.5 1.5 Component / Domain F3 Manual
P5 6.5 5.5 Domain F4 AI
P6 3 3 Domain F4 Manual
P7 1 3 Complete F5 AI
P8 3 3 Complete F5 Manual

log summarization tool, while the others were conducted without
the tool, reflecting a traditional fault localization workflow.

Due to the specialized domain knowledge required for fault local-
ization, it was not feasible to find more than two practitioners who
could effectively work on the same issue. Therefore, we assigned
one issue to each pair of participants based on their overlapping
area of expertise, following a between-subjects design. Participants
P1 and P2 were an exception, as they worked on the same fault
but under different treatments. To maintain the integrity of the
analysis, their data points were considered independently in the
quantitative evaluation (Section 7 discusses threats to validity).

Each session took approximately 2.5 hours, or shorter if par-
ticipants finished the localization task sooner. Each session was
recorded and automatically transcribed using Microsoft Teams. A
researcher was present during each session and took notes.
Think-Aloud Observation: During the session, each participant
attempted to localize a real fault while explaining their thought
process to the observing researchers as they conducted the task.
Participants were given one hour to perform the localization task,
and were informed that it was not important for them to finish the
task—it was more important to characterize their process.

Before the think-aloud session, each participant was asked a
set of demographic questions. They were also asked questions
about their expectations and prior experience with LLM-based
tools (see Table 3). Participants were then simply asked to carry out
their workflow as they normally would when localizing a fault. In
sessions where the LLM-based log summarization tool was used, the
summaries for the logs related to the issue were generated before
the session and provided to the participant. In these sessions, they
were asked to read the summary for each log. They then were asked
to provide their thoughts on the quality, accuracy and helpfulness
of the summary. They then proceeded to localize the fault, with
access to both the summary and raw log files.

At the end of the allotted time, they were asked to draft a fault
report with as much information as they could gather during the
session. This fault report was then compared with those of other
participants analyzing the same fault. Afterwards, they were given
5–10 minutes to reflect, where they were asked to explain their
thought process and motivations while performing the tasks.

Each fault was analyzed by a pair of participants, with one using
LLM-generated summaries and the other working without them.

Table 2: Log types and sizes for analyzed faults.

ID Log Type Log Size

Fault 1 DLT 16.40 MB
OSB 47.70 MB

Fault 2 DLT 46.90 MB
Fault 3 DLT 7.68 MB
Fault 4 DLT 489.00 MB
Fault 5 DLT 726.90 MB

To ensure the realism of the exercise, we did not pre-select faults.
Instead, participants were instructed to book a session as soon as
an actual test failure occurred, before beginning fault localization.

The analyzed faults needed to meet three criteria: they had to
include log files in at least one of the supported formats, the partic-
ipants could not have prior exposure to the fault, and the fault had
to be representative of issues they would typically analyze. Table 2
lists the selected faults, along with their log types and sizes.
Measurement of Cognitive Load:We assess cognitive load using
the NASA Task Load Index, a multi-dimensional workload measure-
ment [17]. The framework divides productivity into six dimensions:
(1) mental demand, (2) physical demand, (3) temporal demand, (4)
satisfaction with own performance, (5) perceived effort, and (6),
perceived frustration. Physical demand was omitted for this study
as it is not applicable during fault localization. Measurement of
NASA TLX for each participant requires three steps:

(1) Each participant assigns a weight to a dimension by compar-
ing each pair of dimensions and choosing the dimension that
they perceive as most contributing to their cognitive load.
For instance, a participant might think that temporal demand
has more impact in their cognitive load than perceived effort.
Then, the weight for each dimension is the number of times
it was picked over another.

(2) After completing the task, the participant rates their experi-
ence of each dimension on a scale of 0–100.

(3) Each rating is multiplied by the weight and summed. Then,
the sum is divided by 10. The resulting value represents the
cognitive load of the fault localization task.

Semi-Structured Interviews: The interview guide can be found
in Table 3. The questions were designed to gather insights into the
users’ expectations and experiences regarding the fault localization
process as well as the tool’s functionality, usability, and impact on
their workflow. When needed, follow-up questions were asked to
further explore certain topics. Users were asked different questions
during portions of the interview based on whether they used the
LLM-generated summaries or not, enabling us to better examine
each workflow in isolation.

4.2 Data Analysis
We analyze RQ1 by using visualization and descriptive statistics
of the NASA TLX values—both the final merged score and the
assessment of the individual dimensions. We answer RQ2 and
RQ3 using thematic analysis of the interview responses, following
Braun and Clarke’s guidelines [7]. During the coding process, we
highlighted relevant parts of the transcripts and assigned code
labels, i.e., short identifiers, to each. We then developed codes that
describe each highlighted segment. We had multiple discussions

AST’26, April 12–18, 2026, Rio de Janeiro, Brazil Ekström et al.

Table 3: Interview Guide.

Demographic Questions (Asked Before Think-Aloud)

1 How many years have you worked at the company?
2 How many years of experience do you have localizing faults?
3 How often do you analyze logs?
4 What testing levels do you work with?

Tool Expectations Questions (Asked Before Think-Aloud)

5 What is your attitude towards AI-assisted tools in your work?
6 What is your attitude towards LLM-based log summarization?
7 Have you used LLMs or LLM-based tools previously?
8 Do you think generated log summaries would help you in your workflow?
9 What information do you expect summaries to contain to aid you?
10 How would you use the generated summaries as part of your workflow?

Fault Localization Questions

11 Were you able to localize the fault?
11a If yes, what was the cause? During which activity did you find it?
11b If not, what do you know about the fault so far?

What do you need to be able to find it?
Are you missing any information?

Satisfaction Questions

12 Did you ever feel frustrated?
12a If yes, what was the most frustrating moment?

Questions for SessionsWithout LLM Assistance

13 Did you ever feel stuck and unable to continue?
13a If yes, how did you overcome this?
14 What steps in the manual process did you find most time consuming?
15 What tools or resources did you rely on the most during your analysis?
16 What does not work about the existing process of analyzing logs?
16a How do you think these issues can be improved or overcome?
17 What was the most difficult activity you did during the analysis?
18 Was there an activity where generated summaries would have helped?
18a Do you think the analysis could be done faster with AI assistance?

Questions for SessionsWith LLM Assistance

19 Do you feel like this tool made your work any easier? Why or why not?
20 How much time would it take you to analyze the logs manually?
20a Do you feel like the summaries helped you save time? If so, how much?
21 Would this be a harder task if you did not have the summaries?
22 Would you recommend the use of LLM-generated summaries to a colleague?
23 Would you use generated summaries in your work as they are today?
23a How would you incorporate them into your workflow?
24 Did the generated summaries help you write a better fault report?

Questions About LLM Summary Quality

25 Were the generated summaries helpful?
26 Did the generated summaries live up to your expectations?
26a If yes, how? What worked best?
26b If not, why not?
27 Did the summaries provide you with all the information you needed?
27a If not, what was missing?
28 How accurate do you think the LLM-generated log summaries were?
29 Did you ever feel misled by the generated summaries?

and iterations of the codes and code labels grouping them into
themes and sub-themes.

The qualitative analysis was completed by the first two authors,
with feedback from the other authors. To ensure ensure agreement
in the coding, the first two authors independently coded the same
interview and then assessed their level of agreement as the number
of shared codes divided by the total number of codes. This resulted
in a score of 0.77, which was considered sufficient to continue the
thematic analysis independently.

We conducted a thematic analysis of the interview data only, as
the interviews containedmore detailed and nuanced reflections rele-
vant to the research questions. In contrast, the think-aloud sessions

NASA TLX Effort Frustration Mental Demand Performance Temporal Demand

AI Manual AI Manual AI Manual AI Manual AI Manual AI Manual

0

10

20

30

40

50

60

70

80

90

100

Treatments

T
LX

 S
co

re
s

RQ1 − Cognitive Load Scores

Figure 4: Box plots of the NASA TLX cognitive load, and the
unweighted values for each dimension.

focused mainly on the localization of specific faults. However, ob-
servations from the think-aloud sessions were used to complement
the thematic analysis when appropriate.
Data Availability: The data used for our analysis is shared in
an anonymised Zenodo package [4]1. We share the CSV files and
scripts used to measure cognitive load using the NASA TLX index,
as well as the interview guide and all labeled quotes from the quali-
tative analysis. However, due to a Non-Disclosure Agreement with
our industry partner, we cannot share transcripts of the sessions or
the failure logs used by our participants.

5 Results
5.1 Cognitive Load Measurement (RQ1)
NASA TLX offers a method of assessing a score for cognitive load
(RQ1) of a task by aggregating five dimensions: mental demand,
temporal demand, perceived performance, perceived effort, and
frustration which are aggregated into single score. As we only had
eight participants, our quantitative results cannot be assessed with
statistical significance. However, the results can still inform future
research. That said, we emphasize the importance of validating
these results with a larger pool of participants in future work.

We plot the final TLX score for each participant in Figure 4, with
higher values representing a greater cognitive load. Despite an
initial hypothesis that LLM assistance could assist in log analysis,
the users of the LLM-generated summaries actually reported a
somewhat higher cognitive load (median of 63.00 versus 58.50).

To further explore the topic of cognitive load, we plot the un-
weighted values2 for each individual dimension in Figure 4. In terms
of median perception, the sessions using LLM-generated summaries
yielded higher mental demand (80.00 versus 70.00), temporal de-
mand (40.00 versus 30.00), and perceived effort (65.00 versus 30.00).
However, the participants in the LLM andmanual sessions noted the
samemedian perceived performance (70.00), indicating that they did
not feel that the summaries resulted in worse or better final results.
Additionally, participants noted reduced frustration in the median

1https://zenodo.org/records/17493425
2Because each participant generates their own weight for each dimension, we use the
unweighted values to more clearly compare the perceptions of participants.

https://zenodo.org/records/17493425

From Logs to Lessons: An Exploration of LLM-based Log Summarization for Debugging Automotive Software AST’26, April 12–18, 2026, Rio de Janeiro, Brazil

Table 4: Main themes identified in the thematic analysis, with
a short description of each.

Theme Description

General Observations Observations from the think-aloud observations.
Hindrances for Adoption What can hinder the tool from being used.
User Observations Participants’ initial thoughts on the tool.
Improving the Tool Aspects of the tool that could be improved.
Log Analysis Process How the tool can improve the log analysis process.
Improving the Workflow How the current workflow could be improved.

case (20.00 versus 30.00) for LLM-assisted sessions—although the
third quartile value was worse for LLM-assisted sessions.

5.2 Thematic Analysis (RQ2–RQ3)
Thematic analysis of the interviews, supplemented with observa-
tions from the think-aloud sessions, can help assess user satisfaction
(RQ2) and impact on workflow (RQ3), as well as offer further in-
sight on cognitive load (RQ1). The thematic analysis produced six
main themes, explained in Table 4, and a further 19 sub-themes
(indicated in italics below).
General Observations: Most of the participants only looked at
summary near the start of the session, not returning to the sum-
maries after they begun to inspect the raw log files. Several partici-
pants also decided to first look at the log itself, before reading the
summary. In some cases, participants even needed a reminder to
check the summaries, as they had immediately settled into their
standard manual workflow. These observations indicate the diffi-
culty of trying to adjust a long-standing, familiar workflow. Even
if a changed workflow may offer benefits, it may be difficult for
developers to seek or adopt those changes.

Some study participants also sought additional information on
how the summaries were generated, e.g., the prompts or context
offered as input (beyond the raw log files). One issue raised by
participants regards the option of filtering logs. In the manual
workflow, the participants rarely inspect the entirety of the log.
Rather, they use contextual keyword searches to filter the logs, and
only inspect the sections that match the filters. The LLM-based log
summarization tool also offers basic settings for filtering—and could
summarize a filtered log—but in the study, we did not apply any
of those settings. Therefore, the summaries often contained irrele-
vant details. We offered participants the opportunity to generate
new summaries during the session. All participants who chose to
generate new, filtered summaries found them more useful than the
unfiltered summaries. However, not all participants took advantage
of this option. This observation highlights the need to be able to
adapt a tool to match the user’s context and workflow.
Hindrances for Adoption: This theme encompasses issues that
could hinder the adoption of this, or similar, LLM-based log analysis
tools. First, participants worried that the summaries could end up
misleading users if they do not have enough experience with the
log analysis process or the tool itself. Participants gave two reasons
for this conclusion. First, the tool may fail to omit irrelevant infor-
mation, and second, the tool is not able to assess the importance of
specific log messages. The participants observed that they possess
experience and domain knowledge that the LLM does not.

“The tool can draw conclusions that are not important. I saw that it drew conclusions
that said “this is bad” or “this is not correct”, I recognize that as something that is
normal behavior, but if I wasn’t aware of that, maybe I would be misled.” - P1

Participants indicated that the tool has a learning curve, i.e., it
may take time and usage before the user learns to integrate the
tool into their workflow or to understand what they should expect
of the summaries. Users may need to learn what types of faults
the tool can detect from the logs, and what it is likely to miss. By
developing this intuition, users would gain more confidence in the
conclusions they draw from reading the summaries and understand
when they need to manually inspect the logs.

“Over time, you would know what you can expect of the tool, to trust it. It’s that
you really know how it works and understand the results and then it becomes more
like a dialogue instead of someone just telling me this is what I know, then you
can recognize this? Hopefully it will be a tool that I can use.” - P1

A few participants indicated concerns that the tool may produce
summaries thatmay not be trustworthy, i.e., might bemissing crucial
details or include misleading recommendations. This was mostly
due to the irrelevant information in the unfiltered summaries.
User Observations: This theme relates to participants’ initial
thoughts of, and attitudes towards, the tool. Overall—despite the
generally-worse cognitive load skills—participants generally offered
positive and hopeful impressions.

First, the participants generally agreed that LLM-based log sum-
marization has low or no risk of negatively impacting the effective-
ness of the log analysis process if implemented. Even if the summary
was inaccurate or incomplete, it could be read and discarded quickly,
having a neutral impact. If the summary was correct and complete,
then the potential positive impact is large.

“If it is good, then I know what I should look for and be quicker at pinpointing it
in the log. If it isn’t, then I need to do my job anyway. So, I don’t lose that much, I
only see that I gain stuff.” - P5

“I guess it’s a win-win. Either you still have to look manually or you get a good
boost and save a lot of time and know where to start to look as well.” - P3

Most participants expressed that LLM-generate log summaries
have great potential to reduce analysis time in the long run, after
overcoming the initial learning curve—especially for large logs or
complex faults. While participants noted the current limitations,
such as the summaries including irrelevant information and lack of
domain-specific context, participants are also hopeful that the tool
will improve over time after being integrated into practice.

“I am not 100% sure it needs to be AI generated, but at least a tool that can facilitate
the analysis of the logs would be beneficial absolutely ... It’s all a matter of how
you train the model and the inputs to the model, but I have a great open mindset
to that and I hope that it can be useful.” - P2

Improving the Tool: Participants unanimously agreed that con-
text and domain knowledge are needed to drawmeaningful conclusions—
i.e., that an out-of-the-box LLM will be limited in its capabilities for
analyzing logs from complex domain-specific products that are not
represented in the open-source data used to train the model.

Participants agreed that the tool need to be able to produce a
deeper analysis of the failure to be able to give relevant suggestions.
There were concern raised that the tool lacks proprietary knowledge
of the codebase, documentation, or tests from the organization:

AST’26, April 12–18, 2026, Rio de Janeiro, Brazil Ekström et al.

“What was it missing? Preconditions, I think. Like a simple understanding of what
a test is supposed to do.” - P1

“Right now it’s just random log messages and it’s probably not trained with any
automotive logging previously. It’s probably trained with a lot of TCP/IP, Linux
networking logs. If you search for log analysis tools on the internet, it’s almost
always DevOps or some kind of server.” - P1

The participants also agreed that the tool includes irrelevant
information in the current summary. For example, logs could include
messages from code elements unrelated to the elements that failed.
Better filtering and prioritization mechanisms are needed.

“It’s very agnostic. It assumes that everything that it sees is more or less equal to
everything else.” - P1

Amajority of the participants agreed that the tool should be more
interactive. This could be done by allowing more configuration and
incorporation of context before execution, or by offering an iterative
process—either a chat-based interface where the user can query
the LLM or through multiple rounds of execution of the tool with
additional configuration in each round.

“If I were able to set up my own prompt as a precondition? Yeah. First you have
automatic summary, and if I think maybe this is the area, go into the tool, edit the
prompt, run it again and see if I get a better result and give it a few attempts.” - P1

“If there’s an interface where I could say ‘at this time range we [action]’ and then
it finds and confirms ‘yeah that occurred, that’s here’. That would be nice.” - P5

Log Analysis Process: The participants agreed that the tool may
improve the overall log analysis process, reducing the time from
when a participant starts to analyze logs to when a fault report is
created. The summary can serve as a valuable starting point for the
drafting of the report:

“If I see a fatal log like this and the summary says it’s a fatal log, I’ll probably start
to write [the report] in 10 minutes instead of later. Maybe I wouldn’t submit it
immediately, but I would still have a draft.” - P1

Similarly, the summary offers a first glance at the cause of the failure,
or an indication of where or what to look for, even if it does not
offer a deep understanding of the issue.
Improving the Workflow: Participants highlighted activities in
their existing workflow that could be improved using this tool. First,
participants explained that there is too much information to process
in the manual analysis, and that, despite the initial TLX results,
cognitive load could be reduced by LLM-based log summarization:

“I think it’s partly information overload. There’s so much logging. I have thousands
of rows, and since we don’t have the complete system, we have parts of the system
simulated or missing and get a lot of errors that are expected.” - P8

“It would be good to have a short summary, at least of what the tool thinks the
problem is, and also highlighting some interesting lines in the log that the tool
used when it made the conclusion.” - P2

Several participants stated that on-boarding is difficult and the
hand-over for new testers is very hard. There is not much documen-
tation and most knowledge comes from hands-on experience. They
expressed hope that the tool could help reduce the initial difficulty.

“The learning curve for the newcomers is just expanding more and more because
we are working with many different things. It becomes time consuming so it’s
mostly hands-on practice.” - P6

“It might be unfeasible because a system like this is complex. It changes several
times per year and then you have to keep everything updated. It’s probably very
hard. Maybe the developers have some internal documentation for what they do,
but ... that’s up to someone like me to understand. That someone doesn’t have the
same set of skills to understand the system.” - P8

Almost all participants explained that they often experience in-
terruptions in their work when analyzing logs. The most common is
the need to ask colleagues—developers or other testers—questions.

“It’s a flawed system like in that sense. Sometimes there’s no other help than them
to get someone to help you” - P8

A majority raised complaints about lack of consistency or adher-
ence to established logging standards, leading to low log quality.

“All applications have their own way of writing the logs ... also, the severity levels.
It’s not uncommon that ‘fatal’ logs are not fatal ... If people would actually follow
the standard we have set. There is a requirement on how to write logs. But they
won’t do it. Sadly, it’s not reinforced.” - P1

Several participants expressed that log analysis is time-consuming
and repetitive, affecting their productivity and motivation. The pro-
cess includes many steps that must be performed repeatedly and
require very little intelligence. Participants expressed a desire to
streamline or fully automate those aspects of the process, focusing
their attention on tasks that require human creativity.

“Downloading logs and manually opening them, enabling filters and searching.
That’s something that could ideally be automated ... So, those are rather repetitive.
There are some steps you do each time. Especially if you have maybe several retries
and you have to do it several times and load all the filters again.” - P8

6 Discussion
Cognitive Load (RQ1): Our initial hypothesis was that LLM-
generated summaries could decrease cognitive load of testers in-
volved in the log analysis process by reducing the need to inspect
the manual logs. The TLX results and observations from the the
think-aloud sessions illustrate a more nuanced reality.

RQ1: Initial results suggests that the inclusion of summaries
somewhat increased the cognitive load (8% increase in median),
with the largest increases in perceived effort (117% median
increase), temporal demand (33%), and mental demand (14%).

Recent studies suggest that most AI integrations fail in prac-
tice [9], suggesting that—although LLMs can help to partially au-
tomate or support tasks—the integration of LLM-based tools must
be done with care. There are four observations that we make that
help contextualize our results.

First, the use of generated summaries is new to the testers. Al-
though we did not ask testes to interact with the tool directly, they
still did not necessarily know when or how to use the summaries.
In other words, education is needed on (i) how to interpret the
summaries, (ii) when to use (or ignore) them, (iii) when further
inspection of the raw logs is needed, and (iv) what types of events
the LLM is likely to highlight or ignore.

In some cases, the testers immediately settled into their standard
workflow and needed to be reminded about the existence of the
summaries. Changing an existing workflow can be difficult and cause
friction, even if there are potential benefits to doing so.

From Logs to Lessons: An Exploration of LLM-based Log Summarization for Debugging Automotive Software AST’26, April 12–18, 2026, Rio de Janeiro, Brazil

Recommendation 1: Changes to existing workflows must be
motivated with clear benefits, may require time to accomplish,
and trust in new tools must be earned.

Fundamentally, the tool must be accurate. Participants pointed
out that the summaries contained irrelevant details. One reason for
this is that the model lacked context on automotive software. LLMs
are trained on open-source data, and it is likely that very little auto-
motive software exists in the training sets of existing models. One
way to incorporate such context is through technological means,
including fine-tuning, tool access, or access to a knowledge base
(e.g., using retrieval-augmented generation). This would ensure
that the model has access to existing organizational context.

Recommendation 2: General-purpose LLMs will face limita-
tions when applied in specialized domains. Ensure that models
can access domain-relevant contextual information, e.g., code,
tests, requirements, fault reports, and standards.

User Satisfaction (RQ2): The interviews indicated that users were
not fully satisfied with the initial tool, but overall, were hopeful
that it would improve in the future.

RQ2: User satisfaction was primarily affected by the level of
trust in the tool, the accuracy of the summaries, and the user
experience when working with the tool.

The participants generally lacked trust in the tool, due to both its
current quality and mixed experiences when working with LLMs
for other tasks. Irrelevant details in the summaries affected both
their cognitive load and their satisfaction, and the recommendations
offered previously will also affect user satisfaction. Improving the
quality of the summaries is clearly a crucial step.

One aspect of user satisfaction that can be further explored is
the user experience. Participants appreciated the initial summaries
but expressed a clear interest in more interactive features. Many
wanted the option to generate new summaries later in the process,
once they had a better understanding of the issue, and expected
these new summaries to reflect their evolving insights. Since the
intention of the LLM-based log summarization tool is not to replace
testers but to enhance their workflow, it is important that it can
be used flexibly and interactively. The requests for interactivity
primarily took three forms.

First, participants desiredmore control over the input and contex-
tual information used to generate summaries. Second, participants
would have liked to be able to ask questions about the summary to
get more specific information. Third, they would like to filter the
logs to facilitate the generation of more focused summaries—e.g.,
filtering based on an error description or specific events or program
elements that they knew were relevant. The most common sug-
gestion for how to implement these interactions was to use a chat
interface, where the tester provides input using natural language.

Recommendation 3: The tool should provide a chat-based
user interface where users can provide context, control or

filter the input used to generate summaries, and ask follow-up
questions as part of an iterative, human-in-the-loop workflow.

Workflow Impact (RQ3): During the interviews, participants
noted multiple negative aspects of the current workflow, and hoped
that the LLM-based log summarization tools could partially address
some of these aspects.

RQ3: Participants noted that the current manual process has
a high cognitive load—largely due to the quantity of informa-
tion that must be processed, a difficult on-boarding process,
frequent interruptions due to the need to ask colleagues for
information, issues with low-quality logs, and repetitive tasks
that do not require human intelligence.

The participants believed that, even if the summary quality im-
proves, log analysis will remain primarily a human-driven process
that requires creativity, experience, and intuition. However, they
also expressed hope that the generated summaries could still reduce
cognitive load by offering a starting point for the analysis process.

Recommendation 4: Generated summaries should be used
early in the analysis process to highlight areas for further
inspection and as a starting point for drafting a fault report.

The need to ask colleagues for information creates interrup-
tions and causes delays. LLMs offer a flexible way to query project-
specific information, as the models can analyze textual data pro-
vided as input or that is part of their training data. Therefore, if
earlier recommendations are implemented (e.g., access to project
and organization knowledge and a chat-based interface) it could
be possible to pose questions to the LLM about aspects of the logs,
source code, documentation, or test cases. Such a tool would not be
a full replacement for communication with colleagues, but could
reduce the number of interruptions to the log analysis process.

Recommendation 5: An LLM-based tool equipped with a
chat interface and access to project and organizational knowl-
edge could be used to reduce the number of question posed to
human colleagues.

Participants also noted that log analysis involves many time-
consuming and repetitive steps, such as locating, downloading,
and opening files in different tools, as well as applying specific
filters. They expressed a clear interest in reducing this manual
effort through greater automation.

Recommendation 6: Develop an integrated log analysis en-
vironment that supports multiple log types within a single
interface and automates routine steps. Such an environment
could incorporate predictive features to assist common actions.

Finally, even if the LLM-based tool is improved, its effectiveness—
and that of humans involved in log analysis—still depends on the
quality of the underlying logs. Low quality logs will yield poor
analysis results. For example, participants noted that it was common
to see log messages inaccurately categorized as “error” when they
should be labeled “warning” or “info”.

AST’26, April 12–18, 2026, Rio de Janeiro, Brazil Ekström et al.

Recommendation 7: Implement and enforce guidelines for
logging to aid both humans and tools during analysis.

7 Threats to Validity
At Volvo Cars AB, each vehicle component requires specific exper-
tise to analyze. There are few available testers with the required
expertise in each area. Because we worked with actual faults in-
stead of archived ones, we were constrained in the number of
participants and faults in the experiment, which hinders inter-
nal validity. Moreover, the quality of LLM-based summaries and
the impact of LLM-based summarization on developers may also
vary across domain area and level of experience. We attempted to
mitigate those limitations by sampling across multiple areas and
identifying practitioners with varying experience.

The complexity of log analysis can vary between participants.
However, as we asked participants to analyze newly-occurring
test failures, our evaluation is representative of a randomized set
of real-world faults. The participants had no previous experience
with the summarization tool or its summaries. Their experience is
biased by the novelty of this form of support, i.e., a novelty effect.
We limited the impact by generating summaries in advance, i.e.,
practitioners did not have to learn how to interact with the tool. This
enabled a clearer understanding of the impact of summaries (and
not the specific tool implementation) on the log analysis workflow.
However, future studies should consider the long-term impact of
LLM support on the log analysis process.

Since the issues were selected at random, we had limited control
over their properties, which introduces construct validity threats.
As shown in Section 4, the largest logs in our study were 726.9 MB
and 489 MB, two medium-sized issues involved logs between 15
and 50 MB, and the smallest was 7.68 MB. The evaluated size range
are the most common in the industry, with larger (gigabyte-scale)
logs occurring less frequently. Moreover, the variation in log sizes
and levels of testing across the selected issues offers a meaning-
ful sample for evaluating the tool’s performance. The consistency
observed across these cases suggests that the findings are stable
within the typical log size spectrum.

Lastly, this case study is centered on participants from a single
company, and the tool currently supports two specific types of logs,
which introduces external validity threats. However, since Volvo
Cars AB operates under industry-wide safety standards and one of
the log types is commonly used across the automotive sector, we
argue that some of our findings are likely to surface in replications
of this work at other automotive companies.

8 Related Work
Many forms of automated log analyses have been proposed in
the research literature [18, 22]. Of particular relevance, machine
learning has shown great promise for anomaly or fault detection [2,
12, 14], root cause analysis [10], and fault localization [23].

Because LLMs have the ability to process both natural language
and source code—and because they can provide interpretable results
in the form of natural language—there is increasing interest in
their use in log analysis and fault localization. For example, Liu
et al. proposed an LLM-based technique for log-based anomaly

detection [24]. In addition, Kang et al. [19] and Yao et al.[35] have
proposed LLM-based approaches that localize faults to likely source
code lines based on failing test cases (i.e., not using logs).

LLMs are commonly used in many domains to summarize large
volumes of text [30, 36], including summarization of software arti-
facts, e.g., bug reports [27, 35]. LLM-based summaries have been
found to be of near-human [27] or human-competitive [36] quality
in some evaluations. However, concerns have been raised regarding
the factual correctness of the generated text [30].

There has been limited work to date on LLM-based log summa-
rization. Egersdoerfer et al. proposed the use of summarization as
part of LLM-based anomaly detection to overcome context window
limitations [15]. In their approach, log segments are analyzed, then
the summary of the current and past segments is used as input for
the analysis of the next segment. This method enables anomaly
detection for very large logs. Their work was an early exploration
and indicated the potential for LLM-based log summarization as
part of a broader log analysis process.

Our approach is similar to that of Egersdoerfer et al.—we also
split logs into segments and process them individually before gener-
ating a merged summary. However, our approach uses MapReduce
to process in parallel, rather than sequentially summarizing using
a sliding window. In addition, our study is the first to explore LLM-
based log summarization in an industrial context or to explore the
impact of the integration of LLM-based log analysis tools on de-
veloper cognitive load, satisfaction, or workflow. Past studies have
focused specifically on quantitative accuracy assessment, while we
offer a complementary perspective focused on the human aspects
of LLM-based tool support. The insights from our study can inform
the design of future LLM-based log analysis tools.

9 Conclusions
This paper explored the use of LLM-based log summarization to
support practitioners during fault localization in an industrial auto-
motive context. We conducted a case study in which practitioners
analyzed actual faults in a CI pipeline using both manual and LLM-
assisted approaches. We gathered data through think-aloud ses-
sions, semi-structured interviews, and cognitive load assessments.

Our findings show that using LLM-generated summaries slightly
increased overall cognitive load, particularly in mental demand,
temporal demand, and perceived effort. However, participants re-
ported lower frustration levels and generally viewed the tool as
a useful aid rather than a replacement for their expertise. They
highlighted the need for greater interactivity, especially a chat in-
terface, and the ability to adapt summaries as their understanding
of the fault evolved. These results indicate that LLM-based tools
can meaningfully support practitioners in navigating complex de-
bugging tasks, provided they are designed to complement existing
workflows rather than automate them entirely.

Acknowledgments
Support was provided by Software Center project 68, “Trustworthy
and Responsible AI-Centric Test Engineering (TRACE)”.

References
[1] Mohammad Amin Alipour. 2012. Automated fault localization techniques: a

survey. Oregon State University 54, 3 (2012).

From Logs to Lessons: An Exploration of LLM-based Log Summarization for Debugging Automotive Software AST’26, April 12–18, 2026, Rio de Janeiro, Brazil

[2] Anunay Amar and Peter C Rigby. 2019. Mining historical test logs to predict bugs
and localize faults in the test logs. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 140–151.

[3] James H Andrews. 1998. Testing using log file analysis: tools, methods, and
issues. In Proceedings 13th IEEE International Conference on Automated Software
Engineering (Cat. No. 98EX239). IEEE, 157–166.

[4] Anonymous. 2025. Re-analysis Package: LLM Summarization for Log Analysis.
doi:10.5281/zenodo.17493425

[5] AUTOSAR. 2019. Specification of Diagnostic Log and Trace. InAUTOSAR R19-11.
[6] Rohini Bisht, Selomie Kindu Ejigu, Gregory Gay, and Predrag Filipovikj. 2023.

Identifying Redundancies and Gaps Across Testing Levels During Verification of
Automotive Software. In 2023 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE, 131–139.

[7] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[8] Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S Yu, and Lichao
Sun. 2023. A comprehensive survey of ai-generated content (aigc): A history of
generative ai from gan to chatgpt. arXiv preprint arXiv:2303.04226 (2023).

[9] Aditya Challapally, Chris Pease, Ramesh Raskar, and Pradyumna Char. [n. d.].
The GenAI Divide: State of AI in Business 2025. https://mlq.ai/media/quarterly_
decks/v0.1_State_of_AI_in_Business_2025_Report.pdf.

[10] Edward Chuah, Shyh-hao Kuo, Paul Hiew, William-Chandra Tjhi, Gary Lee, John
Hammond, Marek T Michalewicz, Terence Hung, and James C Browne. 2010.
Diagnosing the root-causes of failures from cluster log files. In 2010 International
Conference on High Performance Computing. IEEE, 1–10.

[11] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113. doi:10.1145/1327452.
1327492

[12] Biplob Debnath, Mohiuddin Solaimani, Muhammad Ali Gulzar Gulzar, Nipun
Arora, Cristian Lumezanu, Jianwu Xu, Bo Zong, Hui Zhang, Guofei Jiang, and
Latifur Khan. 2018. LogLens: A real-time log analysis system. In 2018 IEEE
38th international conference on distributed computing systems (ICDCS). IEEE,
1052–1062.

[13] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia,
Jingjing Xu, ZhiyongWu, Tianyu Liu, et al. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234 (2022).

[14] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications security.
1285–1298.

[15] Chris Egersdoerfer, Di Zhang, and Dong Dai. 2023. Early exploration of using
chatgpt for log-based anomaly detection on parallel file systems logs. In Pro-
ceedings of the 32nd International Symposium on High-Performance Parallel and
Distributed Computing. 315–316.

[16] Nicole Forsgren, Margaret-Anne Storey, Chandra Maddila, Thomas Zimmermann,
Brian Houck, and Jenna Butler. 2021. The SPACE of Developer Productivity:
There’s more to it than you think. Queue 19, 1 (2021), 20–48.

[17] Sandra G Hart and Lowell E Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of empirical and theoretical research. In Advances in psy-
chology. Vol. 52. Elsevier, 139–183.

[18] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R
Lyu. 2021. A survey on automated log analysis for reliability engineering. ACM
computing surveys (CSUR) 54, 6 (2021), 1–37.

[19] Sungmin Kang, Gabin An, and Shin Yoo. 2024. A quantitative and qualitative
evaluation of LLM-based explainable fault localization. Proceedings of the ACM
on Software Engineering 1, FSE (2024), 1424–1446.

[20] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199–22213.

[21] Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and
Yusuke Iwasawa. 2022. Large Language Models are Zero-Shot Reasoners. In
Advances in Neural Information Processing Systems, S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,
Inc., 22199–22213. https://proceedings.neurips.cc/paper_files/paper/2022/file/
8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf

[22] Łukasz Korzeniowski and Krzysztof Goczyła. 2022. Landscape of Automated Log
Analysis: A Systematic Literature Review and Mapping Study. IEEE Access 10
(2022), 21892–21913. doi:10.1109/ACCESS.2022.3152549

[23] Qingwei Lin, Hongyu Zhang, Jian-Guang Lou, Yu Zhang, and Xuewei Chen.
2016. Log clustering based problem identification for online service systems. In
Proceedings of the 38th international conference on software engineering companion.
102–111.

[24] Yilun Liu, Shimin Tao, Weibin Meng, Jingyu Wang, Wenbing Ma, Yuhang Chen,
Yanqing Zhao, Hao Yang, and Yanfei Jiang. 2024. Interpretable online log analysis
using large language models with prompt strategies. In Proceedings of the 32nd
IEEE/ACM International Conference on Program Comprehension. 35–46.

[25] Abi Noda, Margaret-Anne Storey, Nicole Forsgren, and Michaela Greiler. 2023.
DevEx: What Actually Drives Productivity: The developer-centric approach to

measuring and improving productivity. Queue 21, 2 (May 2023), 35–53. doi:10.
1145/3595878

[26] Adam Oliner, Archana Ganapathi, and Wei Xu. 2012. Advances and challenges
in log analysis. Commun. ACM 55, 2 (2012), 55–61.

[27] Sarah Rastkar, Gail C Murphy, and Gabriel Murray. 2014. Automatic summa-
rization of bug reports. IEEE Transactions on Software Engineering 40, 4 (2014),
366–380.

[28] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical software engineering 14
(2009), 131–164.

[29] Daniel Sundmark, Kai Petersen, and Stig Larsson. 2011. An exploratory case study
of testing in an automotive electrical system release process. In 2011 6th IEEE
International Symposium on Industrial and Embedded Systems. IEEE, 166–175.

[30] Liyan Tang, Zhaoyi Sun, Betina Idnay, Jordan G Nestor, Ali Soroush, Pierre A
Elias, Ziyang Xu, Ying Ding, Greg Durrett, Justin F Rousseau, et al. 2023. k large
language models on medical evidence summarization. NPJ digital medicine 6, 1
(2023), 158.

[31] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2024. Software testing with large language models: Survey, landscape,
and vision. IEEE Transactions on Software Engineering (2024).

[32] Ratnadira Widyasari, Jia Wei Ang, Truong Giang Nguyen, Neil Sharma, and
David Lo. 2024. Demystifying faulty code: Step-by-step reasoning for explainable
fault localization. In 2024 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 568–579.

[33] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[34] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
program repair in the era of large pre-trained language models. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 1482–1494.

[35] Yao Yao et al. 2024. BugBlitz-AI: An Intelligent QA Assistant. In 2024 IEEE 15th
International Conference on Software Engineering and Service Science (ICSESS).
IEEE, 57–63. doi:10.1109/ICSESS62520.2024.10719045

[36] Tianyi Zhang, Faisal Ladhak, Esin Durmus, Percy Liang, Kathleen McKeown, and
Tatsunori B Hashimoto. 2024. Benchmarking large language models for news
summarization. Transactions of the Association for Computational Linguistics 12
(2024), 39–57.

[37] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey
of large language models. arXiv preprint arXiv:2303.18223 1, 2 (2023).

https://doi.org/10.5281/zenodo.17493425
https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf
https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8bb0d291acd4acf06ef112099c16f326-Paper-Conference.pdf
https://doi.org/10.1109/ACCESS.2022.3152549
https://doi.org/10.1145/3595878
https://doi.org/10.1145/3595878
https://doi.org/10.1109/ICSESS62520.2024.10719045

	Abstract
	1 Introduction
	2 Background
	2.1 Case Study Context

	3 LLM-based Log Summarization
	4 Methods
	4.1 Participant Sampling and Data Collection
	4.2 Data Analysis

	5 Results
	5.1 Cognitive Load Measurement (RQ1)
	5.2 Thematic Analysis (RQ2–RQ3)

	6 Discussion
	7 Threats to Validity
	8 Related Work
	9 Conclusions
	Acknowledgments
	References

